Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
from llama_cpp import Llama | |
from huggingface_hub import hf_hub_download | |
import random | |
# Initialize model | |
model_path = hf_hub_download( | |
repo_id="AstroMLab/AstroSage-8B-GGUF", | |
filename="AstroSage-8B-Q8_0.gguf" | |
) | |
llm = Llama( | |
model_path=model_path, | |
n_ctx=2048, | |
n_threads=4, | |
chat_format="llama-3", | |
seed=42, | |
f16_kv=True, | |
logits_all=False, | |
use_mmap=True, | |
use_gpu=True | |
) | |
# Placeholder responses for when context is empty | |
GREETING_MESSAGES = [ | |
"Greetings! I am AstroSage, your guide to the cosmos. What would you like to explore today?", | |
"Welcome to our cosmic journey! I am AstroSage. How may I assist you in understanding the universe?", | |
"AstroSage here. Ready to explore the mysteries of space and time. How may I be of assistance?", | |
"The universe awaits! I'm AstroSage. What astronomical wonders shall we discuss?", | |
] | |
def get_random_greeting(): | |
return random.choice(GREETING_MESSAGES) | |
def respond_stream(message, history): | |
if not message: # Handle empty messages | |
return | |
system_message = "You are AstroSage, a highly knowledgeable AI assistant..." # ... (your system message) | |
messages = [{"role": "system", "content": system_message}] | |
# Format history correctly (especially important if you use clear) | |
for user, assistant in history: | |
messages.append({"role": "user", "content": user}) | |
if assistant: # Check if assistant message exists | |
messages.append({"role": "assistant", "content": assistant}) | |
messages.append({"role": "user", "content": message}) | |
try: | |
response_content = "" | |
for chunk in llm.create_chat_completion( | |
messages=messages, | |
max_tokens=512, | |
temperature=0.7, | |
top_p=0.9, | |
stream=True | |
): | |
delta = chunk["choices"][0]["delta"] | |
if "content" in delta: # check if content exists in delta | |
response_content += delta["content"] | |
yield response_content # yield inside the loop for streaming | |
except Exception as e: | |
yield f"Error during generation: {e}" | |
# Display the welcome message as the first assistant message | |
initial_message = random.choice(GREETING_MESSAGES) | |
chatbot = gr.Chatbot(value=[[None, initial_message]]) # Set initial value here | |
with gr.Blocks() as demo: | |
chatbot.render() | |
clear = gr.Button("Clear") | |
clear.click(lambda: None, None, chatbot, fn=lambda: []) | |
demo.queue().launch() |