Spaces:
Running
on
Zero
Running
on
Zero
from threading import Thread | |
import gradio as gr | |
import random | |
import torch | |
from transformers import ( | |
AutoModelForCausalLM, | |
AutoTokenizer, | |
AutoConfig, | |
TextIteratorStreamer | |
) | |
# Constants for the model and configuration | |
MODEL_ID = "universeTBD/astrollama" | |
WINDOW_SIZE = 4096 | |
DEVICE = "cuda" | |
# Load model configuration, tokenizer, and model | |
config = AutoConfig.from_pretrained(pretrained_model_name_or_path=MODEL_ID) | |
tokenizer = AutoTokenizer.from_pretrained(pretrained_model_name_or_path=MODEL_ID) | |
model = AutoModelForCausalLM.from_pretrained( | |
pretrained_model_name_or_path=MODEL_ID, | |
config=config, | |
device_map="auto", | |
use_safetensors=True, | |
trust_remote_code=True, | |
load_in_4bit=True, | |
torch_dtype=torch.bfloat16 | |
) | |
# Placeholder responses for when context is empty | |
GREETING_MESSAGES = [ | |
"Greetings! I am AstroSage, your guide to the cosmos. What would you like to explore today?", | |
"Welcome to our cosmic journey! I am AstroSage. How may I assist you in understanding the universe?", | |
"AstroSage here. Ready to explore the mysteries of space and time. How may I be of assistance?", | |
"The universe awaits! I'm AstroSage. What astronomical wonders shall we discuss?", | |
] | |
def generate_text(prompt: str, history: list, max_new_tokens=512, temperature=0.7, top_p=0.95, top_k=50): | |
""" | |
Generate a response using the transformer model. | |
""" | |
# Combine history into the prompt | |
formatted_history = "\n".join([f"{msg['role']}: {msg['content']}" for msg in history]) | |
prompt_with_history = f"{formatted_history}\nUser: {prompt}\nAssistant:" | |
# Encode the prompt | |
inputs = tokenizer([prompt_with_history], return_tensors="pt", truncation=True).to(DEVICE) | |
input_length = inputs["input_ids"].shape[-1] | |
max_new_tokens = min(max_new_tokens, WINDOW_SIZE - input_length) | |
# Prepare text streamer for live updates | |
streamer = TextIteratorStreamer( | |
tokenizer=tokenizer, | |
timeout=10.0, | |
skip_prompt=True, | |
skip_special_tokens=True | |
) | |
generation_kwargs = dict( | |
**inputs, | |
streamer=streamer, | |
max_new_tokens=max_new_tokens, | |
do_sample=True, | |
top_p=top_p, | |
top_k=top_k, | |
temperature=temperature, | |
num_beams=1, | |
) | |
# Generate the response in a separate thread for streaming | |
thread = Thread(target=model.generate, kwargs=generation_kwargs) | |
thread.start() | |
# Collect and return the response | |
response = "" | |
for new_text in streamer: | |
response += new_text | |
yield response | |
def user(user_message, history): | |
""" | |
Add the user's message to the history. | |
""" | |
if history is None: | |
history = [] | |
return "", history + [{"role": "user", "content": user_message}] | |
def bot(history): | |
""" | |
Generate the bot's response based on the history. | |
""" | |
if not history: | |
history = [{"role": "assistant", "content": random.choice(GREETING_MESSAGES)}] | |
last_user_message = history[-1]["content"] if history else "" | |
response_generator = generate_text(last_user_message, history) | |
history.append({"role": "assistant", "content": ""}) | |
# Stream the response back | |
for partial_response in response_generator: | |
history[-1]["content"] = partial_response | |
yield history | |
def initial_greeting(): | |
""" | |
Return the initial greeting message. | |
""" | |
return [{"role": "assistant", "content": random.choice(GREETING_MESSAGES)}] | |
# Custom CSS for a space theme | |
custom_css = """ | |
#component-0 { | |
background-color: #1a1a2e; | |
border-radius: 15px; | |
padding: 20px; | |
} | |
.dark { | |
background-color: #0f0f1a; | |
} | |
.contain { | |
max-width: 1200px !important; | |
} | |
""" | |
# Create the Gradio interface | |
with gr.Blocks(css=custom_css, theme=gr.themes.Soft(primary_hue="indigo", neutral_hue="slate")) as demo: | |
gr.Markdown( | |
""" | |
# π AstroSage: Your Cosmic AI Companion | |
Welcome to AstroSage, an advanced AI assistant specializing in astronomy, astrophysics, and cosmology. | |
Powered by the AstroSage-Llama-3.1-8B model, I'm here to help you explore the wonders of the universe! | |
### What Can I Help You With? | |
- πͺ Explanations of astronomical phenomena | |
- π Space exploration and missions | |
- β Stars, galaxies, and cosmology | |
- π Planetary science and exoplanets | |
- π Astrophysics concepts and theories | |
- π Astronomical instruments and observations | |
Just type your question below and let's embark on a cosmic journey together! | |
""" | |
) | |
chatbot = gr.Chatbot( | |
label="Chat with AstroSage", | |
bubble_full_width=False, | |
show_label=True, | |
height=450, | |
type="messages" | |
) | |
with gr.Row(): | |
msg = gr.Textbox( | |
label="Type your message here", | |
placeholder="Ask me anything about space and astronomy...", | |
scale=9 | |
) | |
clear = gr.Button("Clear Chat", scale=1) | |
# Example questions for quick start | |
gr.Examples( | |
examples=[ | |
"What is a black hole and how does it form?", | |
"Can you explain the life cycle of a star?", | |
"What are exoplanets and how do we detect them?", | |
"Tell me about the James Webb Space Telescope.", | |
"What is dark matter and why is it important?" | |
], | |
inputs=msg, | |
label="Example Questions" | |
) | |
# Set up the message chain with streaming | |
msg.submit( | |
user, | |
[msg, chatbot], | |
[msg, chatbot], | |
queue=False | |
).then( | |
bot, | |
chatbot, | |
chatbot | |
) | |
# Clear button functionality | |
clear.click(lambda: None, None, chatbot, queue=False) | |
# Initial greeting | |
demo.load(initial_greeting, None, chatbot, queue=False) | |
# Launch the app | |
if __name__ == "__main__": | |
demo.launch() | |