Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
from llama_cpp import Llama | |
from huggingface_hub import hf_hub_download | |
import random | |
# Initialize model | |
model_path = hf_hub_download( | |
repo_id="AstroMLab/AstroSage-8B-GGUF", | |
filename="AstroSage-8B-Q8_0.gguf" | |
) | |
llm = Llama( | |
model_path=model_path, | |
n_ctx=2048, | |
n_threads=4, | |
chat_format="llama-3", | |
seed=42, | |
f16_kv=True, | |
logits_all=False, | |
use_mmap=True, | |
use_gpu=True | |
) | |
# Placeholder responses for when context is empty | |
GREETING_MESSAGES = [ | |
"Greetings! I am AstroSage, your guide to the cosmos. What would you like to explore today?", | |
"Welcome to our cosmic journey! I am AstroSage. How may I assist you in understanding the universe?", | |
"AstroSage here. Ready to explore the mysteries of space and time. How may I be of assistance?", | |
"The universe awaits! I'm AstroSage. What astronomical wonders shall we discuss?", | |
] | |
def get_random_greeting(): | |
return random.choice(GREETING_MESSAGES) | |
# Function to handle the chat response with streaming | |
def respond_stream(message, history): | |
# Add the system message and previous chat history | |
system_message = "You are AstroSage, a highly knowledgeable AI assistant specialized in astronomy, astrophysics, and cosmology. Provide accurate, engaging, and educational responses about space science and the universe." | |
messages = [{"role": "system", "content": system_message}] | |
for user_msg, assistant_msg in history: | |
if user_msg: | |
messages.append({"role": "user", "content": user_msg}) | |
if assistant_msg: | |
messages.append({"role": "assistant", "content": assistant_msg}) | |
messages.append({"role": "user", "content": message}) | |
try: | |
# Stream response from LLM | |
stream = llm.create_chat_completion( | |
messages=messages, | |
max_tokens=512, | |
temperature=0.7, | |
top_p=0.9, | |
stream=True # Enable streaming | |
) | |
# Stream the chunks of the response | |
response_content = "" | |
for chunk in stream: | |
response_content += chunk["choices"][0]["delta"]["content"] | |
yield response_content | |
except Exception as e: | |
yield f"Error: {e}" | |
# Using gr.ChatInterface for a simpler chat UI | |
chatbot = gr.ChatInterface(fn=respond_stream, type="messages") | |
# Set a welcome message | |
chatbot.set_welcome_message(get_random_greeting()) | |
if __name__ == "__main__": | |
chatbot.launch() | |