File size: 5,321 Bytes
a695705
be1aa47
00e2bff
 
11d7701
c94cc88
a65b868
 
 
 
00e2bff
a65b868
 
00e2bff
 
 
a65b868
 
6b2aec8
a65b868
00e2bff
6b2aec8
831da4e
 
 
 
 
 
 
 
 
 
 
 
 
 
198d160
831da4e
00e2bff
43a1946
831da4e
 
b1078a5
00e2bff
 
 
 
 
 
b1078a5
00e2bff
 
 
 
 
 
 
 
 
 
 
 
 
 
831da4e
 
00e2bff
 
831da4e
00e2bff
 
 
 
 
 
831da4e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d9f6bbd
831da4e
 
d9f6bbd
831da4e
 
 
 
 
 
 
d9f6bbd
831da4e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d9f6bbd
831da4e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a2645a
f4500f5
b39c68e
831da4e
8f3356f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
import spaces
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer
import torch
import random

# Define model parameters for 8-bit quantized loading
model_name = "AstroMLab/AstroSage-8B"

# Load the tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_name)

# Load the model with 8-bit quantization using bitsandbytes
model = AutoModelForCausalLM.from_pretrained(
    model_name,
    torch_dtype=torch.float16,
    load_in_8bit=True,               # Enable 8-bit quantization
    device_map="auto"                # Automatically assign layers to available GPUs
)

streamer = TextStreamer(tokenizer)

# Placeholder responses for when context is empty
GREETING_MESSAGES = [
    "Greetings! I am AstroSage, your guide to the cosmos. What would you like to explore today?",
    "Welcome to our cosmic journey! I am AstroSage. How may I assist you in understanding the universe?",
    "AstroSage here. Ready to explore the mysteries of space and time. How may I be of assistance?",
    "The universe awaits! I'm AstroSage. What astronomical wonders shall we discuss?",
]

def user(user_message, history):
    """Add user message to chat history."""
    if history is None:
        history = []
    return "", history + [{"role": "user", "content": user_message}]

@spaces.GPU(duration=20)
def bot(history):
    """Generate the chatbot response."""
    
    if not history:
        history = []
    
    # Prepare input prompt for the model
    system_prompt = (
        "You are AstroSage, an intelligent AI assistant specializing in astronomy, astrophysics, and cosmology. "
        "Provide accurate, scientific information while making complex concepts accessible. "
        "You're enthusiastic about space exploration and maintain a sense of wonder about the cosmos."
    )
    
    # Construct the chat history as a single input string
    prompt = system_prompt + "\n\n"
    for message in history:
        if message["role"] == "user":
            prompt += f"User: {message['content']}\n"
        else:
            prompt += f"AstroSage: {message['content']}\n"
    prompt += "AstroSage: "

    # Generate response
    inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
    outputs = model.generate(
        **inputs,
        max_new_tokens=512,
        temperature=0.7,
        top_p=0.95,
        do_sample=True,
        streamer=streamer
    )

    # Decode the generated output and update history
    response_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
    response_text = response_text[len(prompt):].strip()
    history.append({"role": "assistant", "content": response_text})
    yield history
    
def initial_greeting():
    """Return properly formatted initial greeting."""
    return [{"role": "assistant", "content": random.choice(GREETING_MESSAGES)}]

# Custom CSS for a space theme
custom_css = """
#component-0 {
    background-color: #1a1a2e;
    border-radius: 15px;
    padding: 20px;
}
.dark {
    background-color: #0f0f1a;
}
.contain {
    max-width: 1200px !important;
}
"""

# Create the Gradio interface
with gr.Blocks(css=custom_css, theme=gr.themes.Soft(primary_hue="indigo", neutral_hue="slate")) as demo:
    gr.Markdown(
        """
        # 🌌 AstroSage: Your Cosmic AI Companion
        
        Welcome to AstroSage, an advanced AI assistant specializing in astronomy, astrophysics, and cosmology. 
        Powered by the AstroSage-Llama-3.1-8B model, I'm here to help you explore the wonders of the universe!
        
        ### What Can I Help You With?
        - πŸͺ Explanations of astronomical phenomena
        - πŸš€ Space exploration and missions
        - ⭐ Stars, galaxies, and cosmology
        - 🌍 Planetary science and exoplanets
        - πŸ“Š Astrophysics concepts and theories
        - πŸ”­ Astronomical instruments and observations
        
        Just type your question below and let's embark on a cosmic journey together!
        """
    )
    
    chatbot = gr.Chatbot(
        label="Chat with AstroSage",
        bubble_full_width=False,
        show_label=True,
        height=450,
        type="messages"
    )
    
    with gr.Row():
        msg = gr.Textbox(
            label="Type your message here",
            placeholder="Ask me anything about space and astronomy...",
            scale=9
        )
        clear = gr.Button("Clear Chat", scale=1)
    
    # Example questions for quick start
    gr.Examples(
        examples=[
            "What is a black hole and how does it form?",
            "Can you explain the life cycle of a star?",
            "What are exoplanets and how do we detect them?",
            "Tell me about the James Webb Space Telescope.",
            "What is dark matter and why is it important?"
        ],
        inputs=msg,
        label="Example Questions"
    )
    
    # Set up the message chain with streaming
    msg.submit(
        user,
        [msg, chatbot],
        [msg, chatbot],
        queue=False
    ).then(
        bot,
        chatbot,
        chatbot
    )
    
    # Clear button functionality
    clear.click(lambda: None, None, chatbot, queue=False)
    
    # Initial greeting
    demo.load(initial_greeting, None, chatbot, queue=False)

# Launch the app
if __name__ == "__main__":
    demo.launch()