File size: 5,321 Bytes
a695705 be1aa47 00e2bff 11d7701 c94cc88 a65b868 00e2bff a65b868 00e2bff a65b868 6b2aec8 a65b868 00e2bff 6b2aec8 831da4e 198d160 831da4e 00e2bff 43a1946 831da4e b1078a5 00e2bff b1078a5 00e2bff 831da4e 00e2bff 831da4e 00e2bff 831da4e d9f6bbd 831da4e d9f6bbd 831da4e d9f6bbd 831da4e d9f6bbd 831da4e 6a2645a f4500f5 b39c68e 831da4e 8f3356f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 |
import spaces
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer
import torch
import random
# Define model parameters for 8-bit quantized loading
model_name = "AstroMLab/AstroSage-8B"
# Load the tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_name)
# Load the model with 8-bit quantization using bitsandbytes
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.float16,
load_in_8bit=True, # Enable 8-bit quantization
device_map="auto" # Automatically assign layers to available GPUs
)
streamer = TextStreamer(tokenizer)
# Placeholder responses for when context is empty
GREETING_MESSAGES = [
"Greetings! I am AstroSage, your guide to the cosmos. What would you like to explore today?",
"Welcome to our cosmic journey! I am AstroSage. How may I assist you in understanding the universe?",
"AstroSage here. Ready to explore the mysteries of space and time. How may I be of assistance?",
"The universe awaits! I'm AstroSage. What astronomical wonders shall we discuss?",
]
def user(user_message, history):
"""Add user message to chat history."""
if history is None:
history = []
return "", history + [{"role": "user", "content": user_message}]
@spaces.GPU(duration=20)
def bot(history):
"""Generate the chatbot response."""
if not history:
history = []
# Prepare input prompt for the model
system_prompt = (
"You are AstroSage, an intelligent AI assistant specializing in astronomy, astrophysics, and cosmology. "
"Provide accurate, scientific information while making complex concepts accessible. "
"You're enthusiastic about space exploration and maintain a sense of wonder about the cosmos."
)
# Construct the chat history as a single input string
prompt = system_prompt + "\n\n"
for message in history:
if message["role"] == "user":
prompt += f"User: {message['content']}\n"
else:
prompt += f"AstroSage: {message['content']}\n"
prompt += "AstroSage: "
# Generate response
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
outputs = model.generate(
**inputs,
max_new_tokens=512,
temperature=0.7,
top_p=0.95,
do_sample=True,
streamer=streamer
)
# Decode the generated output and update history
response_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
response_text = response_text[len(prompt):].strip()
history.append({"role": "assistant", "content": response_text})
yield history
def initial_greeting():
"""Return properly formatted initial greeting."""
return [{"role": "assistant", "content": random.choice(GREETING_MESSAGES)}]
# Custom CSS for a space theme
custom_css = """
#component-0 {
background-color: #1a1a2e;
border-radius: 15px;
padding: 20px;
}
.dark {
background-color: #0f0f1a;
}
.contain {
max-width: 1200px !important;
}
"""
# Create the Gradio interface
with gr.Blocks(css=custom_css, theme=gr.themes.Soft(primary_hue="indigo", neutral_hue="slate")) as demo:
gr.Markdown(
"""
# π AstroSage: Your Cosmic AI Companion
Welcome to AstroSage, an advanced AI assistant specializing in astronomy, astrophysics, and cosmology.
Powered by the AstroSage-Llama-3.1-8B model, I'm here to help you explore the wonders of the universe!
### What Can I Help You With?
- πͺ Explanations of astronomical phenomena
- π Space exploration and missions
- β Stars, galaxies, and cosmology
- π Planetary science and exoplanets
- π Astrophysics concepts and theories
- π Astronomical instruments and observations
Just type your question below and let's embark on a cosmic journey together!
"""
)
chatbot = gr.Chatbot(
label="Chat with AstroSage",
bubble_full_width=False,
show_label=True,
height=450,
type="messages"
)
with gr.Row():
msg = gr.Textbox(
label="Type your message here",
placeholder="Ask me anything about space and astronomy...",
scale=9
)
clear = gr.Button("Clear Chat", scale=1)
# Example questions for quick start
gr.Examples(
examples=[
"What is a black hole and how does it form?",
"Can you explain the life cycle of a star?",
"What are exoplanets and how do we detect them?",
"Tell me about the James Webb Space Telescope.",
"What is dark matter and why is it important?"
],
inputs=msg,
label="Example Questions"
)
# Set up the message chain with streaming
msg.submit(
user,
[msg, chatbot],
[msg, chatbot],
queue=False
).then(
bot,
chatbot,
chatbot
)
# Clear button functionality
clear.click(lambda: None, None, chatbot, queue=False)
# Initial greeting
demo.load(initial_greeting, None, chatbot, queue=False)
# Launch the app
if __name__ == "__main__":
demo.launch()
|