File size: 5,611 Bytes
be1aa47
 
c94cc88
11d7701
c94cc88
11d7701
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c94cc88
 
 
 
be1aa47
 
c94cc88
be1aa47
 
11d7701
be1aa47
 
 
 
 
 
 
11d7701
 
 
 
 
 
 
 
 
 
 
be1aa47
 
 
 
 
 
 
 
 
4775357
 
be1aa47
 
 
 
 
4775357
be1aa47
11d7701
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
be1aa47
 
ef6cbea
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
import gradio as gr
from llama_cpp import Llama
from huggingface_hub import hf_hub_download
import random

# Custom CSS for better styling
custom_css = """
    .gradio-container {
        background: linear-gradient(to bottom, #1a1a2e, #16213e) !important;
    }
    .header-text {
        text-align: center;
        color: #e2e8f0;
        font-size: 2.5em;
        font-weight: bold;
        margin: 1em 0;
        text-shadow: 0 0 10px rgba(255, 255, 255, 0.3);
    }
    .subheader {
        text-align: center;
        color: #94a3b8;
        font-size: 1.2em;
        margin-bottom: 2em;
    }
    .controls-section {
        background: rgba(255, 255, 255, 0.05);
        padding: 1.5em;
        border-radius: 10px;
        margin: 1em 0;
    }
    .model-info {
        background: rgba(0, 0, 0, 0.2);
        padding: 1em;
        border-radius: 8px;
        margin-top: 1em;
        color: #94a3b8;
    }
"""

# Initialize model
model_path = hf_hub_download(
    repo_id="AstroMLab/AstroSage-8B-GGUF",
    filename="AstroSage-8B-Q8_0.gguf"
)

llm = Llama(
    model_path=model_path,
    n_ctx=2048,
    n_threads=4,
    chat_format="llama-3",
    seed=42,
    f16_kv=True,
    logits_all=False,
    use_mmap=True,
    use_gpu=True
)

# Placeholder responses for when context is empty
GREETING_MESSAGES = [
    "Greetings! I am AstroSage, your guide to the cosmos. What would you like to explore today?",
    "Welcome to our cosmic journey! I am AstroSage. How may I assist you in understanding the universe?",
    "AstroSage here. Ready to explore the mysteries of space and time. How may I be of assistance?",
    "The universe awaits! I'm AstroSage. What astronomical wonders shall we discuss?",
]

def get_random_greeting():
    return random.choice(GREETING_MESSAGES)

def respond(message, history, system_message, max_tokens, temperature, top_p):
    messages = [{"role": "system", "content": system_message}]
    for user_msg, assistant_msg in history:
        if user_msg:
            messages.append({"role": "user", "content": user_msg})
        if assistant_msg:
            messages.append({"role": "assistant", "content": assistant_msg})
    messages.append({"role": "user", "content": message})
    
    response = llm.create_chat_completion(
        messages=messages,
        max_tokens=max_tokens,
        temperature=temperature,
        top_p=top_p
    )
    
    return response["choices"][0]["message"]["content"]

def regenerate(message, history, system_message, max_tokens, temperature, top_p):
    # Remove the last assistant message from history
    if history and len(history) > 0:
        history = history[:-1]
    
    # Generate a new response
    return respond(message, history, system_message, max_tokens, temperature, top_p)

def clear_context():
    return [], get_random_greeting()

with gr.Blocks(css=custom_css) as demo:
    gr.HTML(
        """
        <div class="header-text">🌌 AstroSage-LLAMA-3.1-8B</div>
        <div class="subheader">Your AI Guide to the Cosmos</div>
        """
    )
    
    chatbot = gr.Chatbot(
        value=[[None, get_random_greeting()]],
        height=400,
        show_label=False,
    )
    msg = gr.Textbox(
        placeholder="Ask about astronomy, astrophysics, or cosmology...",
        show_label=False,
    )
    
    with gr.Accordion("Advanced Settings", open=False) as advanced_settings:
        system_msg = gr.Textbox(
            value="You are AstroSage, a highly knowledgeable AI assistant specialized in astronomy, astrophysics, and cosmology. Provide accurate, engaging, and educational responses about space science and the universe.",
            label="System Message",
            lines=3
        )
        with gr.Row():
            max_tokens = gr.Slider(
                minimum=1,
                maximum=2048,
                value=512,
                step=1,
                label="Max Tokens"
            )
            temperature = gr.Slider(
                minimum=0.1,
                maximum=4.0,
                value=0.7,
                step=0.1,
                label="Temperature"
            )
            top_p = gr.Slider(
                minimum=0.1,
                maximum=1.0,
                value=0.9,
                step=0.05,
                label="Top-p"
            )
    
    with gr.Row():
        clear = gr.Button("🌟 New Chat")
        regenerate_btn = gr.Button("πŸ”„ Regenerate")
        submit = gr.Button("Send πŸš€", variant="primary")
    
    gr.HTML(
        """
        <div class="model-info">
            <p>πŸ“š Model: AstroSage-LLAMA-3.1-8B (8-bit Quantized)</p>
            <p>πŸ”§ Built with llama.cpp, Gradio, and Python</p>
            <p>πŸ’« Specialized in astronomy, astrophysics, and cosmology</p>
        </div>
        """
    )
    
    # Set up event handlers
    msg.submit(
        respond,
        [msg, chatbot, system_msg, max_tokens, temperature, top_p],
        [chatbot],
        queue=False
    ).then(
        lambda: "",
        None,
        [msg],
        queue=False
    )
    
    submit.click(
        respond,
        [msg, chatbot, system_msg, max_tokens, temperature, top_p],
        [chatbot],
        queue=False
    ).then(
        lambda: "",
        None,
        [msg],
        queue=False
    )
    
    regenerate_btn.click(
        regenerate,
        [msg, chatbot, system_msg, max_tokens, temperature, top_p],
        [chatbot],
        queue=False
    )
    
    clear.click(
        clear_context,
        None,
        [chatbot, msg],
        queue=False
    )

if __name__ == "__main__":
    demo.launch()