File size: 5,050 Bytes
be1aa47
 
c94cc88
11d7701
c94cc88
f4500f5
c94cc88
 
 
 
be1aa47
 
c94cc88
f4500f5
 
11d7701
be1aa47
f4500f5
be1aa47
f4500f5
 
be1aa47
 
11d7701
 
 
 
 
 
 
 
43a1946
 
bb88b85
 
43a1946
ca35e53
43a1946
f4500f5
bb88b85
 
f4500f5
43a1946
 
 
 
f4500f5
43a1946
 
b39c68e
f4500f5
 
43a1946
b39c68e
43a1946
 
 
 
 
 
f4500f5
b39c68e
43a1946
b39c68e
 
 
f4500f5
b39c68e
 
 
 
43a1946
 
fe25716
bb88b85
 
 
 
b39c68e
 
 
 
 
 
 
 
 
 
 
 
 
 
be1aa47
f4500f5
b39c68e
 
 
 
 
14d38df
b39c68e
 
 
 
 
14d38df
b39c68e
 
 
 
 
 
 
 
 
 
 
 
43a1946
 
b39c68e
 
abe401d
b39c68e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f4500f5
b39c68e
43a1946
b39c68e
 
 
43a1946
 
 
f4500f5
b39c68e
 
43a1946
 
 
b39c68e
bb88b85
6a2645a
f4500f5
b39c68e
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
import gradio as gr
from llama_cpp import Llama
from huggingface_hub import hf_hub_download
import random

# Initialize model
model_path = hf_hub_download(
    repo_id="AstroMLab/AstroSage-8B-GGUF",
    filename="AstroSage-8B-Q8_0.gguf"
)

llm = Llama(
    model_path=model_path,
    n_ctx=2048,
    n_threads=4,
    chat_format="llama-3",
    seed=42,
    f16_kv=True,
    logits_all=False,
    use_mmap=True,
    use_gpu=True
)

# Placeholder responses for when context is empty
GREETING_MESSAGES = [
    "Greetings! I am AstroSage, your guide to the cosmos. What would you like to explore today?",
    "Welcome to our cosmic journey! I am AstroSage. How may I assist you in understanding the universe?",
    "AstroSage here. Ready to explore the mysteries of space and time. How may I be of assistance?",
    "The universe awaits! I'm AstroSage. What astronomical wonders shall we discuss?",
]

def user(user_message, history):
    """Add user message to chat history."""
    if history is None:
        history = []
    return "", history + [{"role": "user", "content": user_message}]

def bot(history):
    """Generate and stream the bot's response."""
    if not history:
        history = []
        
    # Prepare the messages for the model
    messages = [
        {
            "role": "system",
            "content": "You are AstroSage, an intelligent AI assistant specializing in astronomy, astrophysics, and space science. You provide accurate, scientific information while making complex concepts accessible. You're enthusiastic about space exploration and maintain a sense of wonder about the cosmos."
        }
    ]
    
    # Add chat history
    for message in history[:-1]:  # Exclude the last message which we just added
        messages.append({"role": message["role"], "content": message["content"]})
    
    # Add the current user message
    messages.append({"role": "user", "content": history[-1]["content"]})
    
    # Start generating the response
    history.append({"role": "assistant", "content": ""})
    
    # Stream the response
    response = llm.create_chat_completion(
        messages=messages,
        max_tokens=512,
        temperature=0.7,
        top_p=0.95,
        stream=True
    )
    
    for chunk in response:
        if chunk and "content" in chunk["choices"][0]["delta"]:
            history[-1]["content"] += chunk["choices"][0]["delta"]["content"]
            yield history

def initial_greeting():
    """Return properly formatted initial greeting."""
    return [{"role": "assistant", "content": random.choice(GREETING_MESSAGES)}]

# Custom CSS for a space theme
custom_css = """
#component-0 {
    background-color: #1a1a2e;
    border-radius: 15px;
    padding: 20px;
}
.dark {
    background-color: #0f0f1a;
}
.contain {
    max-width: 1200px !important;
}
"""

# Create the Gradio interface
with gr.Blocks(css=custom_css, theme=gr.themes.Soft(primary_hue="indigo", neutral_hue="slate")) as demo:
    gr.Markdown(
        """
        # 🌌 AstroSage: Your Cosmic AI Companion
        
        Welcome to AstroSage, an advanced AI assistant specializing in astronomy, astrophysics, and cosmology. 
        Powered by the AstroSage-8B model, I'm here to help you explore the wonders of the universe!
        
        ### What Can I Help You With?
        - πŸͺ Explanations of astronomical phenomena
        - πŸš€ Space exploration and missions
        - ⭐ Stars, galaxies, and cosmology
        - 🌍 Planetary science and exoplanets
        - πŸ“Š Astrophysics concepts and theories
        - πŸ”­ Astronomical instruments and observations
        
        Just type your question below and let's embark on a cosmic journey together!
        """
    )
    
    chatbot = gr.Chatbot(
        label="Chat with AstroSage",
        bubble_full_width=False,
        show_label=True,
        height=450,
        type="messages"
    )
    
    with gr.Row():
        msg = gr.Textbox(
            label="Type your message here",
            placeholder="Ask me anything about space and astronomy...",
            scale=9
        )
        clear = gr.Button("Clear Chat", scale=1)
    
    # Example questions for quick start
    gr.Examples(
        examples=[
            "What is a black hole and how does it form?",
            "Can you explain the life cycle of a star?",
            "What are exoplanets and how do we detect them?",
            "Tell me about the James Webb Space Telescope.",
            "What is dark matter and why is it important?"
        ],
        inputs=msg,
        label="Example Questions"
    )
    
    # Set up the message chain with streaming
    msg.submit(
        user,
        [msg, chatbot],
        [msg, chatbot],
        queue=False
    ).then(
        bot,
        chatbot,
        chatbot
    )
    
    # Clear button functionality
    clear.click(lambda: None, None, chatbot, queue=False)
    
    # Initial greeting
    demo.load(initial_greeting, None, chatbot, queue=False)

# Launch the app
if __name__ == "__main__":
    demo.launch()