AstroSage / app.py
Tijmen2's picture
Update app.py
abe401d verified
raw
history blame
2.44 kB
import gradio as gr
from llama_cpp import Llama
from huggingface_hub import hf_hub_download
import random
# Initialize model
model_path = hf_hub_download(
repo_id="AstroMLab/AstroSage-8B-GGUF",
filename="AstroSage-8B-Q8_0.gguf"
)
llm = Llama(
model_path=model_path,
n_ctx=2048,
n_threads=4,
chat_format="llama-3",
seed=42,
f16_kv=True,
logits_all=False,
use_mmap=True,
use_gpu=True
)
# Placeholder responses for when context is empty
GREETING_MESSAGES = [
"Greetings! I am AstroSage, your guide to the cosmos. What would you like to explore today?",
"Welcome to our cosmic journey! I am AstroSage. How may I assist you in understanding the universe?",
"AstroSage here. Ready to explore the mysteries of space and time. How may I be of assistance?",
"The universe awaits! I'm AstroSage. What astronomical wonders shall we discuss?",
]
def respond_stream(message, history):
if not message:
return
system_message = "Assume the role of AstroSage, a helpful chatbot designed to answer user queries about astronomy, astrophysics, and cosmology."
messages = [{"role": "system", "content": system_message}]
for user, assistant in history:
messages.append({"role": "user", "content": user})
if assistant:
messages.append({"role": "assistant", "content": assistant})
messages.append({"role": "user", "content": message})
try:
past_tokens = "" # Accumulate and yield all tokens so far
for chunk in llm.create_chat_completion(
messages=messages,
max_tokens=512,
temperature=0.7,
top_p=0.9,
stream=True
):
delta = chunk["choices"][0]["delta"]
if "content" in delta:
new_tokens = delta["content"]
past_tokens += new_tokens
yield past_tokens # Yield the accumulated response to allow streaming
except Exception as e:
yield f"Error during generation: {e}"
initial_message = random.choice(GREETING_MESSAGES)
chatbot = gr.Chatbot([[None, initial_message]]).style(height=750) # Set height
with gr.Blocks() as demo:
with gr.Row():
with gr.Column(scale=0.8):
chatbot.render()
with gr.Column(scale=0.2):
clear = gr.Button("Clear")
clear.click(lambda: [], None, chatbot,queue=False)
demo.queue().launch()