|
import gradio as gr |
|
from llama_cpp import Llama |
|
from huggingface_hub import hf_hub_download |
|
import random |
|
|
|
|
|
model_path = hf_hub_download( |
|
repo_id="AstroMLab/AstroSage-8B-GGUF", |
|
filename="AstroSage-8B-Q8_0.gguf" |
|
) |
|
|
|
llm = Llama( |
|
model_path=model_path, |
|
n_ctx=2048, |
|
n_threads=4, |
|
chat_format="llama-3", |
|
seed=42, |
|
f16_kv=True, |
|
logits_all=False, |
|
use_mmap=True, |
|
use_gpu=True |
|
) |
|
|
|
|
|
GREETING_MESSAGES = [ |
|
"Greetings! I am AstroSage, your guide to the cosmos. What would you like to explore today?", |
|
"Welcome to our cosmic journey! I am AstroSage. How may I assist you in understanding the universe?", |
|
"AstroSage here. Ready to explore the mysteries of space and time. How may I be of assistance?", |
|
"The universe awaits! I'm AstroSage. What astronomical wonders shall we discuss?", |
|
] |
|
|
|
def respond_stream(message, history): |
|
if not message: |
|
return |
|
|
|
system_message = "Assume the role of AstroSage, a helpful chatbot designed to answer user queries about astronomy, astrophysics, and cosmology." |
|
messages = [{"role": "system", "content": system_message}] |
|
for user, assistant in history: |
|
messages.append({"role": "user", "content": user}) |
|
if assistant: |
|
messages.append({"role": "assistant", "content": assistant}) |
|
messages.append({"role": "user", "content": message}) |
|
|
|
try: |
|
past_tokens = "" |
|
for chunk in llm.create_chat_completion( |
|
messages=messages, |
|
max_tokens=512, |
|
temperature=0.7, |
|
top_p=0.9, |
|
stream=True |
|
): |
|
delta = chunk["choices"][0]["delta"] |
|
if "content" in delta: |
|
new_tokens = delta["content"] |
|
past_tokens += new_tokens |
|
yield past_tokens |
|
except Exception as e: |
|
yield f"Error during generation: {e}" |
|
|
|
initial_message = random.choice(GREETING_MESSAGES) |
|
chatbot = gr.Chatbot([[None, initial_message]]).style(height=750) |
|
|
|
with gr.Blocks() as demo: |
|
with gr.Row(): |
|
with gr.Column(scale=0.8): |
|
chatbot.render() |
|
|
|
with gr.Column(scale=0.2): |
|
clear = gr.Button("Clear") |
|
|
|
clear.click(lambda: [], None, chatbot,queue=False) |
|
|
|
demo.queue().launch() |
|
|