tingyuansen commited on
Commit
51616ef
·
verified ·
1 Parent(s): 2021120

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +170 -2
README.md CHANGED
@@ -3,8 +3,176 @@ title: README
3
  emoji: 📈
4
  colorFrom: indigo
5
  colorTo: gray
6
- sdk: streamlit
7
  pinned: false
8
  ---
9
 
10
- Edit this `README.md` markdown file to author your organization card.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  emoji: 📈
4
  colorFrom: indigo
5
  colorTo: gray
6
+ sdk: static
7
  pinned: false
8
  ---
9
 
10
+
11
+ ## Who We Are
12
+
13
+ AstroMLab is a dynamic group of *astrophysicists* and *computer scientists* passionate about pushing the boundaries of **Large Language Models (LLMs)in astronomy**. Our team includes:
14
+
15
+ - *Leading astronomers, astrophysicists, and cosmologists*
16
+ - *Top natural language processing experts* from Oak Ridge National Laboratory and Argonne National Laboratory
17
+ - *Frontier arXivists* from the NASA Astrophysics Data System
18
+ - *Enthusiastic young researchers* bridging the gap between astronomy and LLMs
19
+
20
+ While LLMs are advancing rapidly, we believe that real progress in *AI-driven astronomical research* requires *deep domain knowledge*. This conviction drives us to tackle the challenges in applying LLMs to astronomy head-on.
21
+
22
+ ## Our Goals
23
+
24
+ Our ultimate aim is to:
25
+
26
+ 1. Develop specialized LLMs for astronomy
27
+ 2. Create **reliable, light-weight, and open-source models** adaptable for advanced research agents
28
+ 3. **Expedite scientific discovery** through LLM-driven end-to-end research
29
+ 4. Push the boundaries of what's possible in astronomical research
30
+
31
+ ## Our Achievements
32
+
33
+ Despite being a young group, we've made significant strides:
34
+
35
+ - Curated the **first extensive astronomy-based benchmarking dataset** using high-quality review articles ([Ting et al. 2024](https://arxiv.org/abs/2407.11194))
36
+ - Explored training of specialized astronomy LLMs
37
+ - Released three model sets:
38
+ - **AstroSage-8B** (coming soon, de Haan et al. 2024)
39
+ - **AstroLLaMA-2-70B** ([Pan et al. 2024](https://arxiv.org/abs/2407.11194))
40
+ - **AstroLLaMA-3-8B** ([Pan et al. 2024](https://arxiv.org/abs/2407.11194))
41
+ - AstroLLaMA-2-7B ([Perkowski et al. 2024](https://arxiv.org/abs/2401.01916), [Nguyen et al. 2023](https://arxiv.org/abs/2309.06126), developed during our time at *UniverseTBD*)
42
+
43
+ Our flagship model, AstroSage-8B, demonstrates remarkable performance when compared to other models in the 7B class. It achieves a substantial lead of 3.5 percentage points over its closest competitor, which translates to an estimated **10-fold reduction** in computational costs (see the [AstroBench page](benchmarking.html) for details).
44
+
45
+ | Model | Score (%) |
46
+ |-------|-----------|
47
+ | **<span style="color: #3366cc;">AstroSage-8B (AstroMLab)</span>** | **<span style="color: #3366cc;">77.2</span>** |
48
+ | LLaMA-3.1-8B | 73.7 |
49
+ | **<span style="color: #3366cc;">AstroLLaMA-2-70B (AstroMLab)</span>** | **<span style="color: #3366cc;">72.3</span>** |
50
+ | Gemma-2-9B | 71.5 |
51
+ | Qwen-2.5-7B | 70.4 |
52
+ | Yi-1.5-9B | 68.4 |
53
+ | InternLM-2.5-7B | 64.0 |
54
+ | Mistral-7B-v0.3 | 63.9 |
55
+ | ChatGLM3-6B | 50.4 |
56
+ | AstroLLaMA-2-7B (UniverseTBD) | 44.3 |
57
+
58
+ ![Cost and performance trade-off in astronomical Q&A](figures/AstroBench.png)
59
+
60
+ The exceptional performance of AstroSage-8B showcases the potential for more efficient and cost-effective agentic research in astronomy. This advancement opens up new possibilities for widespread application of AI in astronomical research, making sophisticated analysis more accessible to a broader range of institutions and researchers.
61
+
62
+
63
+ ## Open Source Commitment
64
+
65
+ We are fully committed to open source:
66
+
67
+ - All our models are released on **Hugging Face**
68
+ - Find our models here: [AstroMLab on Hugging Face](https://huggingface.co/AstroMLab)
69
+
70
+
71
+ ## Our Support and Vision
72
+
73
+ We are grateful for our supporters:
74
+
75
+ - Access to the Frontier nodes at Oak Ridge Leadership Computing Facility
76
+ - Backing from Microsoft's Accelerating Foundation Models Research (AFMR)
77
+
78
+
79
+ ## Join Us
80
+
81
+ Our team is expanding, and we'd love to hear from you!
82
+
83
+ - Contact us: [[email protected]](mailto:[email protected])
84
+
85
+ <br>
86
+
87
+ ---
88
+
89
+ ## Team
90
+
91
+ <table>
92
+ <tr>
93
+ <td align="center" width="25%"><img src="figures/Members_Yuan-Sen_Ting.png" alt="Yuan-Sen Ting"></td>
94
+ <td align="center" width="25%"><img src="figures/Members_Tirthankar_Ghosal.png" alt="Tirthankar Ghosal"></td>
95
+ <td align="center" width="25%"><img src="figures/Members_Tijmen_de_Haan.png" alt="Tijmen de Haan"></td>
96
+ <td align="center" width="25%"><img src="figures/Members_Josh_Nguyen.png" alt="Josh Nguyen"></td>
97
+ </tr>
98
+ <tr>
99
+ <td align="center"><strong>Yuan-Sen Ting</strong><br>The Ohio State University</td>
100
+ <td align="center"><strong>Tirthankar Ghosal</strong><br>Oak Ridge National Laboratory</td>
101
+ <td align="center"><strong>Tijmen de Haan</strong><br>KEK</td>
102
+ <td align="center"><strong>Josh Nguyen</strong><br>University of Pennsylvania</td>
103
+ </tr>
104
+ <tr>
105
+ <td align="center"><img src="figures/Members_Rui_Pan.png" alt="Rui Pan"></td>
106
+ <td align="center"><img src="figures/Members_Hardik_Arora.png" alt="Hardik Arora"></td>
107
+ <td align="center"><img src="figures/Members_Emily_Herron.png" alt="Emily Herron"></td>
108
+ <td align="center"><img src="figures/Members_Yuwei_Yang.png" alt="Yuwei Yang"></td>
109
+ </tr>
110
+ <tr>
111
+ <td align="center"><strong>Rui Pan</strong><br>University of Illinois Urbana-Champaign</td>
112
+ <td align="center"><strong>Hardik Arora</strong><br>Indian Institutes of Technology</td>
113
+ <td align="center"><strong>Emily Herron</strong><br>Oak Ridge National Laboratory</td>
114
+ <td align="center"><strong>Yuwei Yang</strong><br>Australian National University</td>
115
+ </tr>
116
+ <tr>
117
+ <td align="center"><img src="figures/Members_Zechang_Sun.png" alt="Alberto Accomazzi"></td>
118
+ <td align="center"><img src="figures/Members_Alberto_Accomazzi.png" alt="Alberto Accomazzi"></td>
119
+ <td align="center"><img src="figures/Members_Argonne.png" alt="Azton Wells"></td>
120
+ <td align="center"><img src="figures/Members_Nesar_Ramachandra.png" alt="Nesar Ramachandra"></td>
121
+ <td align="center"><img src="figures/Members_Sandeep_Madireddy.png" alt="Sandeep Madireddy"></td>
122
+ </tr>
123
+ <tr>
124
+ <td align="center"><strong>Zechang Sun</strong><br>Tsinghua University</td>
125
+ <td align="center"><strong>Alberto Accomazzi</strong><br>NASA Astrophysics Data System</td>
126
+ <td align="center"><strong>Azton Wells</strong><br>Argonne National Laboratory</td>
127
+ <td align="center"><strong>Nesar Ramachandra</strong><br>Argonne National Laboratory</td>
128
+ </tr>
129
+ <tr>
130
+ <td align="center"><img src="figures/Members_Sandeep_Madireddy.png" alt="Sandeep Madireddy"></td>
131
+ </tr>
132
+ <tr>
133
+ <td align="center"><strong>Sandeep Madireddy</strong><br>Argonne National Laboratory</td>
134
+ </tr>
135
+ </table>
136
+
137
+ <br>
138
+
139
+ ---
140
+
141
+ ## Publications
142
+
143
+ ### AstroMLab 1: Who Wins Astronomy Jeopardy!?
144
+
145
+ **[Yuan-Sen Ting, et al., 2024, arXiv:2407.11194](https://arxiv.org/abs/2407.11194)**
146
+
147
+ We present a comprehensive evaluation of proprietary and open-weights large language models using the first astronomy-specific benchmarking dataset. This dataset comprises 4,425 multiple-choice questions curated from the Annual Review of Astronomy and Astrophysics, covering a broad range of astrophysical topics.
148
+
149
+ Key findings:
150
+ - Claude-3.5-Sonnet outperforms competitors, achieving 85.0% accuracy.
151
+ - Open-weights models like LLaMA-3-70b (80.6%) and Qwen-2-72b (77.7%) now compete with some of the best proprietary models.
152
+ - We identify performance variations across astronomical subfields, with challenges in exoplanet-related fields, stellar astrophysics, and instrumentation.
153
+ - Top-performing models demonstrate well-calibrated confidence, with correlations above 0.9 between confidence and correctness.
154
+ - The rapid progress suggests that LLM-driven research in astronomy may become feasible in the near future.
155
+
156
+
157
+ <br>
158
+
159
+ ### AstroMLab 2: AstroLLaMA-2-70B Model and Benchmarking Specialised LLMs for Astronomy
160
+
161
+ **[Rui Pan, Josh Nguyen, et al., 2024](https://arxiv.org/abs/2407.11194)**
162
+
163
+ We introduce new models: AstroLLaMA-3-8B and AstroLLaMA-2-70B, building upon the previous AstroLLaMA series and quantitatively assess specialized LLMs in astronomy, leveraging recently curated high-quality astronomical MCQs.
164
+
165
+ Key points:
166
+ - Previously released AstroLLaMA series (based on LLaMA-2-7B) underperforms compared to the native LLaMA model.
167
+ - Performance degradation can be partially mitigated by using high-quality data for continual pretraining.
168
+ - Continual pretraining on the 70B model can yield improvements, despite observed catastrophic forgetting in smaller models.
169
+
170
+ <br>
171
+
172
+ ### Legacy Output: The AstroLLaMA Series
173
+
174
+ 1. **[Josh Nguyen, et al., 2023, arXiv:2309.06126](https://arxiv.org/abs/2309.06126)**
175
+ 2. **[Ernest Perkowski, Rui Pan, et al., 2024, arXiv:2401.01916](https://arxiv.org/abs/2401.01916)**
176
+
177
+ The first open-source conversational AI tool tailored for the astronomy community -- AstroLLaMA-2-7B and AstroLLaMA-2-7B-Chat.
178
+