Spaces:
Runtime error
Runtime error
Update main.py
Browse files
main.py
CHANGED
@@ -1,33 +1,43 @@
|
|
1 |
from fastapi import FastAPI, File, UploadFile, Form
|
2 |
from fastapi.responses import JSONResponse
|
|
|
3 |
from enum import Enum
|
4 |
from transformers import pipeline, MarianMTModel, MarianTokenizer
|
5 |
import shutil
|
6 |
import os
|
7 |
import uuid
|
8 |
-
import uvicorn
|
9 |
-
from googletrans import Translator
|
10 |
|
11 |
-
|
|
|
|
|
12 |
app = FastAPI()
|
13 |
|
14 |
-
#
|
15 |
-
|
16 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
-
#
|
19 |
class LanguageEnum(str, Enum):
|
20 |
-
ta = "ta"
|
21 |
-
fr = "fr"
|
22 |
-
es = "es"
|
23 |
-
de = "de"
|
24 |
-
it = "it"
|
25 |
-
hi = "hi"
|
26 |
-
ru = "ru"
|
27 |
-
zh = "zh"
|
28 |
-
ar = "ar"
|
29 |
|
30 |
-
#
|
31 |
model_map = {
|
32 |
"fr": "Helsinki-NLP/opus-mt-en-fr",
|
33 |
"es": "Helsinki-NLP/opus-mt-en-es",
|
@@ -37,23 +47,12 @@ model_map = {
|
|
37 |
"ru": "Helsinki-NLP/opus-mt-en-ru",
|
38 |
"zh": "Helsinki-NLP/opus-mt-en-zh",
|
39 |
"ar": "Helsinki-NLP/opus-mt-en-ar",
|
40 |
-
"ta": "
|
41 |
}
|
42 |
|
43 |
def translate_text(text, target_lang):
|
44 |
-
if target_lang == "ta":
|
45 |
-
# Use Google Translate for Tamil
|
46 |
-
try:
|
47 |
-
translator = Translator()
|
48 |
-
result = translator.translate(text, dest="ta")
|
49 |
-
return result.text
|
50 |
-
except Exception as e:
|
51 |
-
return f"Google Translate failed: {str(e)}"
|
52 |
-
|
53 |
-
# Use MarianMT for other supported languages
|
54 |
if target_lang not in model_map:
|
55 |
return f"No model for language: {target_lang}"
|
56 |
-
|
57 |
model_name = model_map[target_lang]
|
58 |
tokenizer = MarianTokenizer.from_pretrained(model_name)
|
59 |
model = MarianMTModel.from_pretrained(model_name)
|
@@ -61,38 +60,29 @@ def translate_text(text, target_lang):
|
|
61 |
translated = model.generate(**encoded)
|
62 |
return tokenizer.batch_decode(translated, skip_special_tokens=True)[0]
|
63 |
|
64 |
-
|
65 |
-
# π§ Generate a random English sentence
|
66 |
-
def generate_random_sentence(prompt="Daily conversation", max_length=30):
|
67 |
-
result = generator_pipeline(prompt, max_length=max_length, num_return_sequences=1)
|
68 |
-
return result[0]["generated_text"].strip()
|
69 |
-
|
70 |
-
# π€ Transcription endpoint
|
71 |
@app.post("/transcribe")
|
72 |
async def transcribe(audio: UploadFile = File(...)):
|
73 |
-
|
74 |
-
with open(
|
75 |
shutil.copyfileobj(audio.file, f)
|
76 |
try:
|
77 |
-
result = asr_pipeline(
|
78 |
return JSONResponse(content={"transcribed_text": result["text"]})
|
79 |
finally:
|
80 |
-
os.remove(
|
81 |
|
82 |
-
# π Translation endpoint
|
83 |
@app.post("/translate")
|
84 |
async def translate(text: str = Form(...), target_lang: LanguageEnum = Form(...)):
|
85 |
translated = translate_text(text, target_lang.value)
|
86 |
return JSONResponse(content={"translated_text": translated})
|
87 |
|
88 |
-
# π Combined endpoint (speech-to-translation)
|
89 |
@app.post("/process")
|
90 |
async def process(audio: UploadFile = File(...), target_lang: LanguageEnum = Form(...)):
|
91 |
-
|
92 |
-
with open(
|
93 |
shutil.copyfileobj(audio.file, f)
|
94 |
try:
|
95 |
-
result = asr_pipeline(
|
96 |
transcribed_text = result["text"]
|
97 |
translated_text = translate_text(transcribed_text, target_lang.value)
|
98 |
return JSONResponse(content={
|
@@ -100,15 +90,18 @@ async def process(audio: UploadFile = File(...), target_lang: LanguageEnum = For
|
|
100 |
"translated_text": translated_text
|
101 |
})
|
102 |
finally:
|
103 |
-
os.remove(
|
104 |
|
105 |
-
# β¨ Generate + Translate endpoint
|
106 |
@app.get("/generate")
|
107 |
-
def generate(prompt: str = "Daily conversation", target_lang: LanguageEnum = LanguageEnum.
|
108 |
-
english =
|
109 |
translated = translate_text(english, target_lang.value)
|
110 |
return {
|
111 |
"prompt": prompt,
|
112 |
"english": english,
|
113 |
"translated": translated
|
114 |
}
|
|
|
|
|
|
|
|
|
|
1 |
from fastapi import FastAPI, File, UploadFile, Form
|
2 |
from fastapi.responses import JSONResponse
|
3 |
+
from fastapi.middleware.cors import CORSMiddleware
|
4 |
from enum import Enum
|
5 |
from transformers import pipeline, MarianMTModel, MarianTokenizer
|
6 |
import shutil
|
7 |
import os
|
8 |
import uuid
|
|
|
|
|
9 |
|
10 |
+
# Set Hugging Face cache directory (essential for Hugging Face Spaces)
|
11 |
+
os.environ["HF_HOME"] = "/app/.cache/huggingface"
|
12 |
+
|
13 |
app = FastAPI()
|
14 |
|
15 |
+
# CORS for frontend
|
16 |
+
app.add_middleware(
|
17 |
+
CORSMiddleware,
|
18 |
+
allow_origins=["*"],
|
19 |
+
allow_credentials=True,
|
20 |
+
allow_methods=["*"],
|
21 |
+
allow_headers=["*"],
|
22 |
+
)
|
23 |
+
|
24 |
+
# β
Use smaller model to avoid timeout
|
25 |
+
asr_pipeline = pipeline("automatic-speech-recognition", model="openai/whisper-tiny")
|
26 |
+
generator_pipeline = pipeline("text-generation", model="sshleifer/tiny-gpt2")
|
27 |
|
28 |
+
# Supported languages (dropdown in Swagger UI)
|
29 |
class LanguageEnum(str, Enum):
|
30 |
+
ta = "ta"
|
31 |
+
fr = "fr"
|
32 |
+
es = "es"
|
33 |
+
de = "de"
|
34 |
+
it = "it"
|
35 |
+
hi = "hi"
|
36 |
+
ru = "ru"
|
37 |
+
zh = "zh"
|
38 |
+
ar = "ar"
|
39 |
|
40 |
+
# Language model mapping
|
41 |
model_map = {
|
42 |
"fr": "Helsinki-NLP/opus-mt-en-fr",
|
43 |
"es": "Helsinki-NLP/opus-mt-en-es",
|
|
|
47 |
"ru": "Helsinki-NLP/opus-mt-en-ru",
|
48 |
"zh": "Helsinki-NLP/opus-mt-en-zh",
|
49 |
"ar": "Helsinki-NLP/opus-mt-en-ar",
|
50 |
+
"ta": "Helsinki-NLP/opus-mt-en-ta" # Changed from gsarti to Helsinki version
|
51 |
}
|
52 |
|
53 |
def translate_text(text, target_lang):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
if target_lang not in model_map:
|
55 |
return f"No model for language: {target_lang}"
|
|
|
56 |
model_name = model_map[target_lang]
|
57 |
tokenizer = MarianTokenizer.from_pretrained(model_name)
|
58 |
model = MarianMTModel.from_pretrained(model_name)
|
|
|
60 |
translated = model.generate(**encoded)
|
61 |
return tokenizer.batch_decode(translated, skip_special_tokens=True)[0]
|
62 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
@app.post("/transcribe")
|
64 |
async def transcribe(audio: UploadFile = File(...)):
|
65 |
+
temp_file = f"temp_{uuid.uuid4().hex}.wav"
|
66 |
+
with open(temp_file, "wb") as f:
|
67 |
shutil.copyfileobj(audio.file, f)
|
68 |
try:
|
69 |
+
result = asr_pipeline(temp_file)
|
70 |
return JSONResponse(content={"transcribed_text": result["text"]})
|
71 |
finally:
|
72 |
+
os.remove(temp_file)
|
73 |
|
|
|
74 |
@app.post("/translate")
|
75 |
async def translate(text: str = Form(...), target_lang: LanguageEnum = Form(...)):
|
76 |
translated = translate_text(text, target_lang.value)
|
77 |
return JSONResponse(content={"translated_text": translated})
|
78 |
|
|
|
79 |
@app.post("/process")
|
80 |
async def process(audio: UploadFile = File(...), target_lang: LanguageEnum = Form(...)):
|
81 |
+
temp_file = f"temp_{uuid.uuid4().hex}.wav"
|
82 |
+
with open(temp_file, "wb") as f:
|
83 |
shutil.copyfileobj(audio.file, f)
|
84 |
try:
|
85 |
+
result = asr_pipeline(temp_file)
|
86 |
transcribed_text = result["text"]
|
87 |
translated_text = translate_text(transcribed_text, target_lang.value)
|
88 |
return JSONResponse(content={
|
|
|
90 |
"translated_text": translated_text
|
91 |
})
|
92 |
finally:
|
93 |
+
os.remove(temp_file)
|
94 |
|
|
|
95 |
@app.get("/generate")
|
96 |
+
def generate(prompt: str = "Daily conversation", target_lang: LanguageEnum = LanguageEnum.fr):
|
97 |
+
english = generator_pipeline(prompt, max_length=30, num_return_sequences=1)[0]["generated_text"].strip()
|
98 |
translated = translate_text(english, target_lang.value)
|
99 |
return {
|
100 |
"prompt": prompt,
|
101 |
"english": english,
|
102 |
"translated": translated
|
103 |
}
|
104 |
+
|
105 |
+
@app.get("/")
|
106 |
+
def root():
|
107 |
+
return {"message": "β
Backend is live!"}
|