File size: 7,688 Bytes
432128e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
"""
Quantumaurora: Advanced Transformer-based Language Model
Version: 1.0.0
Created: 2025
"""

import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import Dataset, DataLoader
from transformers import PreTrainedTokenizerFast
from tokenizers import Tokenizer, models, trainers, pre_tokenizers, decoders
import math
from typing import Optional, Dict, List, Tuple
from torch.cuda.amp import autocast, GradScaler
from torch.nn.parallel import DistributedDataParallel
import torch.distributed as dist
import torch.multiprocessing as mp
from torch.utils.checkpoint import checkpoint
import json
import os
from datetime import datetime

class QuantumauroraConfig:
    """Configuration class for Quantumaurora model"""
    def __init__(self, 
                 vocab_size: int = 50000,
                 d_model: int = 512,
                 num_heads: int = 8,
                 num_layers: int = 6,
                 d_ff: int = 2048,
                 dropout: float = 0.1,
                 attention_type: str = "full",
                 use_checkpointing: bool = True,
                 max_sequence_length: int = 2048,
                 model_version: str = "1.0.0"):
        self.vocab_size = vocab_size
        self.d_model = d_model
        self.num_heads = num_heads
        self.num_layers = num_layers
        self.d_ff = d_ff
        self.dropout = dropout
        self.attention_type = attention_type
        self.use_checkpointing = use_checkpointing
        self.max_sequence_length = max_sequence_length
        self.model_version = model_version
        self.model_type = "quantumaurora"
        
    def save(self, path: str):
        """Save configuration to JSON file"""
        config_dict = self.__dict__
        config_dict['timestamp'] = datetime.now().isoformat()
        
        with open(path, 'w') as f:
            json.dump(config_dict, f, indent=2)
    
    @classmethod
    def load(cls, path: str) -> 'QuantumauroraConfig':
        """Load configuration from JSON file"""
        with open(path, 'r') as f:
            config_dict = json.load(f)
        
        # Remove timestamp from loaded config
        if 'timestamp' in config_dict:
            del config_dict['timestamp']
            
        return cls(**config_dict)

class Quantumaurora(nn.Module):
    """
    Quantumaurora: Advanced Transformer-based Language Model
    
    A state-of-the-art language model featuring:
    - Multi-head attention with sparse/local patterns
    - Multiple pre-training objectives
    - Gradient checkpointing
    - Mixed precision training
    - Distributed training support
    """
    
    def __init__(self, config: QuantumauroraConfig):
        super().__init__()
        self.config = config
        
        # Model components
        self.token_embedding = nn.Embedding(config.vocab_size, config.d_model)
        self.positional_encoding = PositionalEncoding(config.d_model)
        
        self.transformer_blocks = nn.ModuleList([
            TransformerBlock(
                config.d_model,
                config.num_heads,
                config.d_ff,
                config.dropout,
                config.attention_type
            ) for _ in range(config.num_layers)
        ])
        
        self.pretraining_objectives = PreTrainingObjectives(
            config.d_model,
            config.vocab_size
        )
        
        self.dropout = nn.Dropout(config.dropout)
        
    def forward(self, x: torch.Tensor, mask: Optional[torch.Tensor] = None) -> Dict[str, torch.Tensor]:
        x = self.token_embedding(x)
        x = self.positional_encoding(x)
        x = self.dropout(x)
        
        for transformer_block in self.transformer_blocks:
            if self.config.use_checkpointing and self.training:
                x = checkpoint(transformer_block, x, mask)
            else:
                x = transformer_block(x, mask)
        
        return self.pretraining_objectives(x)
    
    def save_pretrained(self, path: str):
        """Save model and configuration"""
        os.makedirs(path, exist_ok=True)
        
        # Save configuration
        config_path = os.path.join(path, 'config.json')
        self.config.save(config_path)
        
        # Save model weights
        model_path = os.path.join(path, 'model.pt')
        torch.save(self.state_dict(), model_path)
        
        # Save tokenizer if available
        if hasattr(self, 'tokenizer'):
            tokenizer_path = os.path.join(path, 'tokenizer.json')
            self.tokenizer.save(tokenizer_path)
    
    @classmethod
    def from_pretrained(cls, path: str) -> 'Quantumaurora':
        """Load pretrained model and configuration"""
        config = QuantumauroraConfig.load(os.path.join(path, 'config.json'))
        model = cls(config)
        
        model_path = os.path.join(path, 'model.pt')
        model.load_state_dict(torch.load(model_path))
        
        # Load tokenizer if available
        tokenizer_path = os.path.join(path, 'tokenizer.json')
        if os.path.exists(tokenizer_path):
            model.tokenizer = PreTrainedTokenizerFast.from_file(tokenizer_path)
        
        return model

class QuantumauroraTrainer:
    """Training manager for Quantumaurora model"""
    
    def __init__(self,
                 model: Quantumaurora,
                 train_dataloader: DataLoader,
                 optimizer: torch.optim.Optimizer,
                 device: str = "cuda",
                 use_mixed_precision: bool = True,
                 distributed: bool = True):
        self.model = model
        self.train_dataloader = train_dataloader
        self.optimizer = optimizer
        self.device = device
        self.use_mixed_precision = use_mixed_precision
        self.distributed = distributed
        
        if use_mixed_precision:
            self.scaler = GradScaler()
        
        if distributed:
            self.model = DistributedDataParallel(model)
    
    def train(self, num_epochs: int, save_dir: str = None):
        """Main training loop"""
        best_loss = float('inf')
        
        for epoch in range(num_epochs):
            losses = self.train_epoch(epoch)
            
            # Save checkpoint if this is the best model
            if save_dir and losses['total'] < best_loss:
                best_loss = losses['total']
                self.model.save_pretrained(os.path.join(save_dir, f'checkpoint-{epoch}'))
                
            print(f"Epoch {epoch+1}/{num_epochs}")
            for loss_name, loss_value in losses.items():
                print(f"{loss_name}: {loss_value:.4f}")

def main():
    """Example usage of Quantumaurora"""
    
    # Initialize configuration
    config = QuantumauroraConfig(
        vocab_size=50000,
        d_model=768,
        num_heads=12,
        num_layers=12,
        attention_type="sparse"
    )
    
    # Initialize model
    model = Quantumaurora(config)
    
    # Multi-GPU training if available
    world_size = torch.cuda.device_count()
    if world_size > 1:
        mp.spawn(
            train_distributed,
            args=(world_size, model, dataset),
            nprocs=world_size,
            join=True
        )
    else:
        # Single GPU training
        trainer = QuantumauroraTrainer(
            model=model,
            train_dataloader=train_dataloader,
            optimizer=torch.optim.Adam(model.parameters()),
            use_mixed_precision=True,
            distributed=False
        )
        
        trainer.train(
            num_epochs=10,
            save_dir='quantumaurora_checkpoints'
        )

if __name__ == "__main__":
    main()