Spaces:
Sleeping
Sleeping
File size: 2,474 Bytes
83d190a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 |
from typing import Optional
import torch
from style_bert_vits2.constants import Languages
from style_bert_vits2.nlp import bert_models
def extract_bert_feature(
text: str,
word2ph: list[int],
device: str,
assist_text: Optional[str] = None,
assist_text_weight: float = 0.7,
) -> torch.Tensor:
"""
英語のテキストから BERT の特徴量を抽出する
Args:
text (str): 英語のテキスト
word2ph (list[int]): 元のテキストの各文字に音素が何個割り当てられるかを表すリスト
device (str): 推論に利用するデバイス
assist_text (Optional[str], optional): 補助テキスト (デフォルト: None)
assist_text_weight (float, optional): 補助テキストの重み (デフォルト: 0.7)
Returns:
torch.Tensor: BERT の特徴量
"""
if device == "cuda" and not torch.cuda.is_available():
device = "cpu"
model = bert_models.load_model(Languages.EN).to(device) # type: ignore
style_res_mean = None
with torch.no_grad():
tokenizer = bert_models.load_tokenizer(Languages.EN)
inputs = tokenizer(text, return_tensors="pt")
for i in inputs:
inputs[i] = inputs[i].to(device) # type: ignore
res = model(**inputs, output_hidden_states=True)
res = torch.cat(res["hidden_states"][-3:-2], -1)[0].cpu()
if assist_text:
style_inputs = tokenizer(assist_text, return_tensors="pt")
for i in style_inputs:
style_inputs[i] = style_inputs[i].to(device) # type: ignore
style_res = model(**style_inputs, output_hidden_states=True)
style_res = torch.cat(style_res["hidden_states"][-3:-2], -1)[0].cpu()
style_res_mean = style_res.mean(0)
assert len(word2ph) == res.shape[0], (text, res.shape[0], len(word2ph))
word2phone = word2ph
phone_level_feature = []
for i in range(len(word2phone)):
if assist_text:
assert style_res_mean is not None
repeat_feature = (
res[i].repeat(word2phone[i], 1) * (1 - assist_text_weight)
+ style_res_mean.repeat(word2phone[i], 1) * assist_text_weight
)
else:
repeat_feature = res[i].repeat(word2phone[i], 1)
phone_level_feature.append(repeat_feature)
phone_level_feature = torch.cat(phone_level_feature, dim=0)
return phone_level_feature.T
|