AtefAbdo99 commited on
Commit
7302c25
·
verified ·
1 Parent(s): cd167b5

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +76 -0
app.py ADDED
@@ -0,0 +1,76 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import tensorflow as tf
3
+ import numpy as np
4
+ from PIL import Image
5
+ import os
6
+ import uuid
7
+ from datetime import datetime
8
+
9
+ # Load the trained model
10
+ model = tf.keras.models.load_model('oct_classification_final_model_lg.keras')
11
+
12
+ # Define the class labels
13
+ class_labels = ['CNV', 'DME', 'DRUSEN', 'NORMAL']
14
+
15
+ # App title and description
16
+ st.title("OCT Retinal Image Analyzer")
17
+ st.write("Created for MedDots Company")
18
+
19
+ # File uploader
20
+ uploaded_file = st.file_uploader("Choose an OCT image...", type=["jpg", "jpeg", "png"])
21
+
22
+ if uploaded_file is not None:
23
+ # Display image
24
+ image = Image.open(uploaded_file)
25
+ st.image(image, caption='Uploaded OCT Image', use_column_width=True)
26
+
27
+ # Preprocessing image for model
28
+ img = image.convert('RGB')
29
+ img = img.resize((224, 224))
30
+ img_array = np.array(img) / 255.0
31
+ img_array = np.expand_dims(img_array, axis=0)
32
+
33
+ # User input for patient data
34
+ age = st.number_input("Age", min_value=0, max_value=120, value=30)
35
+ gender = st.selectbox("Gender", ["Male", "Female", "Other"])
36
+ hba1c = st.number_input("HbA1c", min_value=0.0, max_value=20.0, value=5.5, step=0.1)
37
+ duration_dm = st.number_input("Duration of Diabetes Mellitus (years)", min_value=0, max_value=80, value=5)
38
+ type_dm = st.selectbox("Type of Diabetes Mellitus", ["Type 1", "Type 2"])
39
+ eye_side = st.selectbox("Eye Side", ["Left", "Right"])
40
+ ivr_injections = st.number_input("Number of IVR Injections", min_value=0, max_value=50, value=0)
41
+ initial_iop = st.number_input("Initial IOP", min_value=0.0, max_value=50.0, value=15.0, step=0.1)
42
+ initial_logmar = st.number_input("Initial LogMAR", min_value=0.0, max_value=2.0, value=0.0, step=0.01)
43
+ type_dr = st.selectbox("Type of Diabetic Retinopathy", ["Severe NPDR", "PDR", "PDR s/p PRP"])
44
+
45
+ if st.button("Analyze Image"):
46
+ # Make prediction
47
+ prediction = model.predict(img_array)
48
+ predicted_class = class_labels[np.argmax(prediction)]
49
+ confidence = float(np.max(prediction))
50
+
51
+ # Display the result
52
+ st.subheader(f"Diagnosis: {predicted_class}")
53
+ st.write(f"Confidence: {confidence * 100:.2f}%")
54
+
55
+ # Display patient data summary
56
+ st.write("### Patient Data:")
57
+ st.write(f"Age: {age}")
58
+ st.write(f"Gender: {gender}")
59
+ st.write(f"HbA1c: {hba1c}")
60
+ st.write(f"Duration of DM: {duration_dm} years")
61
+ st.write(f"Type of DM: {type_dm}")
62
+ st.write(f"Eye Side: {eye_side}")
63
+ st.write(f"Number of IVR Injections: {ivr_injections}")
64
+ st.write(f"Initial IOP: {initial_iop}")
65
+ st.write(f"Initial LogMAR: {initial_logmar}")
66
+ st.write(f"Type of DR: {type_dr}")
67
+
68
+ # Provide a recommendation based on the diagnosis
69
+ st.write("### Recommendation:")
70
+ recommendation = {
71
+ "CNV": "Recommended follow-up with retina specialist for potential anti-VEGF therapy.",
72
+ "DME": "Suggested treatment includes laser photocoagulation or intravitreal injections.",
73
+ "DRUSEN": "Regular monitoring advised. Consider lifestyle modifications and AREDS supplements.",
74
+ "NORMAL": "No immediate action required. Continue regular eye check-ups."
75
+ }.get(predicted_class, "Please consult with an ophthalmologist for personalized advice.")
76
+ st.write(recommendation)