|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import argparse |
|
import math |
|
import cv2 |
|
import glob |
|
import os |
|
from anime_face_detector import create_detector |
|
from tqdm import tqdm |
|
import numpy as np |
|
|
|
KP_REYE = 11 |
|
KP_LEYE = 19 |
|
|
|
SCORE_THRES = 0.90 |
|
|
|
|
|
def detect_faces(detector, image, min_size): |
|
preds = detector(image) |
|
|
|
|
|
faces = [] |
|
for pred in preds: |
|
bb = pred['bbox'] |
|
score = bb[-1] |
|
if score < SCORE_THRES: |
|
continue |
|
|
|
left, top, right, bottom = bb[:4] |
|
cx = int((left + right) / 2) |
|
cy = int((top + bottom) / 2) |
|
fw = int(right - left) |
|
fh = int(bottom - top) |
|
|
|
lex, ley = pred['keypoints'][KP_LEYE, 0:2] |
|
rex, rey = pred['keypoints'][KP_REYE, 0:2] |
|
angle = math.atan2(ley - rey, lex - rex) |
|
angle = angle / math.pi * 180 |
|
|
|
faces.append((cx, cy, fw, fh, angle)) |
|
|
|
faces.sort(key=lambda x: max(x[2], x[3]), reverse=True) |
|
return faces |
|
|
|
|
|
def rotate_image(image, angle, cx, cy): |
|
h, w = image.shape[0:2] |
|
rot_mat = cv2.getRotationMatrix2D((cx, cy), angle, 1.0) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
result = cv2.warpAffine(image, rot_mat, (w, h), flags=cv2.INTER_LINEAR, borderMode=cv2.BORDER_REFLECT) |
|
return result, cx, cy |
|
|
|
|
|
def process(args): |
|
assert (not args.resize_fit) or args.resize_face_size is None, f"resize_fit and resize_face_size can't be specified both / resize_fitとresize_face_sizeはどちらか片方しか指定できません" |
|
assert args.crop_ratio is None or args.resize_face_size is None, f"crop_ratio指定時はresize_face_sizeは指定できません" |
|
|
|
|
|
print("loading face detector.") |
|
detector = create_detector('yolov3') |
|
|
|
|
|
if args.crop_size is None: |
|
crop_width = crop_height = None |
|
else: |
|
tokens = args.crop_size.split(',') |
|
assert len(tokens) == 2, f"crop_size must be 'width,height' / crop_sizeは'幅,高さ'で指定してください" |
|
crop_width, crop_height = [int(t) for t in tokens] |
|
|
|
if args.crop_ratio is None: |
|
crop_h_ratio = crop_v_ratio = None |
|
else: |
|
tokens = args.crop_ratio.split(',') |
|
assert len(tokens) == 2, f"crop_ratio must be 'horizontal,vertical' / crop_ratioは'幅,高さ'の倍率で指定してください" |
|
crop_h_ratio, crop_v_ratio = [float(t) for t in tokens] |
|
|
|
|
|
print("processing.") |
|
output_extension = ".png" |
|
|
|
os.makedirs(args.dst_dir, exist_ok=True) |
|
paths = glob.glob(os.path.join(args.src_dir, "*.png")) + glob.glob(os.path.join(args.src_dir, "*.jpg")) + \ |
|
glob.glob(os.path.join(args.src_dir, "*.webp")) |
|
for path in tqdm(paths): |
|
basename = os.path.splitext(os.path.basename(path))[0] |
|
|
|
|
|
image = cv2.imdecode(np.fromfile(path, np.uint8), cv2.IMREAD_UNCHANGED) |
|
if len(image.shape) == 2: |
|
image = cv2.cvtColor(image, cv2.COLOR_GRAY2BGR) |
|
if image.shape[2] == 4: |
|
print(f"image has alpha. ignore / 画像の透明度が設定されているため無視します: {path}") |
|
image = image[:, :, :3].copy() |
|
|
|
h, w = image.shape[:2] |
|
|
|
faces = detect_faces(detector, image, args.multiple_faces) |
|
for i, face in enumerate(faces): |
|
cx, cy, fw, fh, angle = face |
|
face_size = max(fw, fh) |
|
if args.min_size is not None and face_size < args.min_size: |
|
continue |
|
if args.max_size is not None and face_size >= args.max_size: |
|
continue |
|
face_suffix = f"_{i+1:02d}" if args.multiple_faces else "" |
|
|
|
|
|
face_img = image |
|
if args.rotate: |
|
face_img, cx, cy = rotate_image(face_img, angle, cx, cy) |
|
|
|
|
|
if crop_width is not None or crop_h_ratio is not None: |
|
cur_crop_width, cur_crop_height = crop_width, crop_height |
|
if crop_h_ratio is not None: |
|
cur_crop_width = int(face_size * crop_h_ratio + .5) |
|
cur_crop_height = int(face_size * crop_v_ratio + .5) |
|
|
|
|
|
scale = 1.0 |
|
if args.resize_face_size is not None: |
|
|
|
scale = args.resize_face_size / face_size |
|
if scale < cur_crop_width / w: |
|
print( |
|
f"image width too small in face size based resizing / 顔を基準にリサイズすると画像の幅がcrop sizeより小さい(顔が相対的に大きすぎる)ので顔サイズが変わります: {path}") |
|
scale = cur_crop_width / w |
|
if scale < cur_crop_height / h: |
|
print( |
|
f"image height too small in face size based resizing / 顔を基準にリサイズすると画像の高さがcrop sizeより小さい(顔が相対的に大きすぎる)ので顔サイズが変わります: {path}") |
|
scale = cur_crop_height / h |
|
elif crop_h_ratio is not None: |
|
|
|
pass |
|
else: |
|
|
|
if w < cur_crop_width: |
|
print(f"image width too small/ 画像の幅がcrop sizeより小さいので画質が劣化します: {path}") |
|
scale = cur_crop_width / w |
|
if h < cur_crop_height: |
|
print(f"image height too small/ 画像の高さがcrop sizeより小さいので画質が劣化します: {path}") |
|
scale = cur_crop_height / h |
|
if args.resize_fit: |
|
scale = max(cur_crop_width / w, cur_crop_height / h) |
|
|
|
if scale != 1.0: |
|
w = int(w * scale + .5) |
|
h = int(h * scale + .5) |
|
face_img = cv2.resize(face_img, (w, h), interpolation=cv2.INTER_AREA if scale < 1.0 else cv2.INTER_LANCZOS4) |
|
cx = int(cx * scale + .5) |
|
cy = int(cy * scale + .5) |
|
fw = int(fw * scale + .5) |
|
fh = int(fh * scale + .5) |
|
|
|
cur_crop_width = min(cur_crop_width, face_img.shape[1]) |
|
cur_crop_height = min(cur_crop_height, face_img.shape[0]) |
|
|
|
x = cx - cur_crop_width // 2 |
|
cx = cur_crop_width // 2 |
|
if x < 0: |
|
cx = cx + x |
|
x = 0 |
|
elif x + cur_crop_width > w: |
|
cx = cx + (x + cur_crop_width - w) |
|
x = w - cur_crop_width |
|
face_img = face_img[:, x:x+cur_crop_width] |
|
|
|
y = cy - cur_crop_height // 2 |
|
cy = cur_crop_height // 2 |
|
if y < 0: |
|
cy = cy + y |
|
y = 0 |
|
elif y + cur_crop_height > h: |
|
cy = cy + (y + cur_crop_height - h) |
|
y = h - cur_crop_height |
|
face_img = face_img[y:y + cur_crop_height] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if args.debug: |
|
cv2.rectangle(face_img, (cx-fw//2, cy-fh//2), (cx+fw//2, cy+fh//2), (255, 0, 255), fw//20) |
|
|
|
_, buf = cv2.imencode(output_extension, face_img) |
|
with open(os.path.join(args.dst_dir, f"{basename}{face_suffix}_{cx:04d}_{cy:04d}_{fw:04d}_{fh:04d}{output_extension}"), "wb") as f: |
|
buf.tofile(f) |
|
|
|
|
|
def setup_parser() -> argparse.ArgumentParser: |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("--src_dir", type=str, help="directory to load images / 画像を読み込むディレクトリ") |
|
parser.add_argument("--dst_dir", type=str, help="directory to save images / 画像を保存するディレクトリ") |
|
parser.add_argument("--rotate", action="store_true", help="rotate images to align faces / 顔が正立するように画像を回転する") |
|
parser.add_argument("--resize_fit", action="store_true", |
|
help="resize to fit smaller side after cropping / 切り出し後の画像の短辺がcrop_sizeにあうようにリサイズする") |
|
parser.add_argument("--resize_face_size", type=int, default=None, |
|
help="resize image before cropping by face size / 切り出し前に顔がこのサイズになるようにリサイズする") |
|
parser.add_argument("--crop_size", type=str, default=None, |
|
help="crop images with 'width,height' pixels, face centered / 顔を中心として'幅,高さ'のサイズで切り出す") |
|
parser.add_argument("--crop_ratio", type=str, default=None, |
|
help="crop images with 'horizontal,vertical' ratio to face, face centered / 顔を中心として顔サイズの'幅倍率,高さ倍率'のサイズで切り出す") |
|
parser.add_argument("--min_size", type=int, default=None, |
|
help="minimum face size to output (included) / 処理対象とする顔の最小サイズ(この値以上)") |
|
parser.add_argument("--max_size", type=int, default=None, |
|
help="maximum face size to output (excluded) / 処理対象とする顔の最大サイズ(この値未満)") |
|
parser.add_argument("--multiple_faces", action="store_true", |
|
help="output each faces / 複数の顔が見つかった場合、それぞれを切り出す") |
|
parser.add_argument("--debug", action="store_true", help="render rect for face / 処理後画像の顔位置に矩形を描画します") |
|
|
|
return parser |
|
|
|
|
|
if __name__ == '__main__': |
|
parser = setup_parser() |
|
|
|
args = parser.parse_args() |
|
|
|
process(args) |
|
|