File size: 6,432 Bytes
5e416e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
import os
import streamlit as st
from dotenv import load_dotenv
from PyPDF2 import PdfReader
from langchain.text_splitter import CharacterTextSplitter
from langchain.embeddings import HuggingFaceEmbeddings  # Changed to HuggingFace
from langchain.vectorstores import FAISS
from langchain.chat_models import ChatOpenAI  # For LLM
from langchain.memory import ConversationBufferMemory
from langchain.chains import ConversationalRetrievalChain
from htmlTemplates import css, bot_template, user_template

# Function to extract text from PDF documents
def get_pdf_text(pdf_docs):
    text = ""
    for pdf in pdf_docs:
        pdf_reader = PdfReader(pdf)
        for page in pdf_reader.pages:
            extracted_text = page.extract_text()
            if extracted_text:
                text += extracted_text
    return text

# Function to split text into manageable chunks
def get_text_chunks(text):
    text_splitter = CharacterTextSplitter(
        separator="\n",
        chunk_size=1000,
        chunk_overlap=200,
        length_function=len
    )
    chunks = text_splitter.split_text(text)
    return chunks

# Function to create a vector store using HuggingFace embeddings
def get_vectorstore(text_chunks, huggingface_api_key):
    embeddings = HuggingFaceEmbeddings(
        model_name="sentence-transformers/all-MiniLM-L6-v2",  # Choose an appropriate model
        model_kwargs={"use_auth_token": huggingface_api_key}
    )
    
    vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings)
    return vectorstore

# Function to initialize the conversational retrieval chain with GrokAI
def get_conversation_chain(vectorstore, grok_api_key, grok_api_base):
    llm = ChatOpenAI(
        openai_api_key=grok_api_key,
        openai_api_base=grok_api_base,
        model_name="grok-beta",  # Specify GrokAI's model
        temperature=0.5
    )
    
    memory = ConversationBufferMemory(
        memory_key='chat_history', return_messages=True
    )
    conversation_chain = ConversationalRetrievalChain.from_llm(
        llm=llm,  # Use the configured GrokAI LLM
        retriever=vectorstore.as_retriever(),
        memory=memory
    )
    return conversation_chain

# Function to handle user input and generate responses
def handle_userinput(user_question):
    if st.session_state.conversation is None:
        st.warning("Documents are still being processed. Please wait.")
        return

    response = st.session_state.conversation({'question': user_question})
    st.session_state.chat_history = response['chat_history']

# Function triggered when the user presses Enter in the input box
def on_enter():
    user_question = st.session_state.user_question
    if user_question:
        handle_userinput(user_question)
        st.session_state.user_question = ""  # Clear the input box

# Function to load and process PDF documents
def load_and_process_pdfs(folder_path, huggingface_api_key, grok_api_key, grok_api_base):
    pdf_files = [file for file in os.listdir(folder_path) if file.lower().endswith('.pdf')]
    if not pdf_files:
        st.error(f"No PDF files found in the directory: {folder_path}")
        return

    pdf_docs = []
    for file in pdf_files:
        file_path = os.path.join(folder_path, file)
        pdf_docs.append(file_path)

    with st.spinner("Processing documents..."):
        # Extract text from PDFs
        with st.spinner("Extracting text from PDFs..."):
            pdf_file_objects = [open(file, 'rb') for file in pdf_docs]
            raw_text = get_pdf_text(pdf_file_objects)
            # Close the files after reading
            for f in pdf_file_objects:
                f.close()

        # Split text into chunks
        with st.spinner("Splitting text into chunks..."):
            text_chunks = get_text_chunks(raw_text)

        # Create vector store using HuggingFace embeddings
        with st.spinner("Creating vector store..."):
            vectorstore = get_vectorstore(text_chunks, huggingface_api_key)

        # Initialize conversation chain with GrokAI LLM
        with st.spinner("Initializing conversation chain..."):
            st.session_state.conversation = get_conversation_chain(vectorstore, grok_api_key, grok_api_base)

    st.success("Documents processed successfully!")

# Function to display chat history with auto-scrolling
def display_chat_history():
    if st.session_state.chat_history:
        for i, message in enumerate(st.session_state.chat_history):
            if i % 2 == 0:
                st.markdown(user_template.replace("{{MSG}}", message.content), unsafe_allow_html=True)
            else:
                st.markdown(bot_template.replace("{{MSG}}", message.content), unsafe_allow_html=True)
        
        # Inject JavaScript to scroll the entire page to the bottom
        scroll_script = """
        <script>
            // Function to scroll to the bottom of the page
            function scrollToBottom() {
                window.scrollTo({ top: document.body.scrollHeight, behavior: 'smooth' });
            }
            // Delay to ensure the DOM is fully rendered
            setTimeout(scrollToBottom, 100);
        </script>
        """
        st.markdown(scroll_script, unsafe_allow_html=True)

# Main function to run the Streamlit app
def main():
    load_dotenv()
    
    # Retrieve credentials from .env
    grok_api_key = os.getenv("GROK_API_KEY")
    grok_api_base = "https://api.x.ai/v1"  # GrokAI's API base URL
    huggingface_api_key = os.getenv("HUGGINGFACEHUB_API_TOKEN")
    
    st.set_page_config(page_title="Chat with AI Tax Agent", page_icon=":books:")
    st.write(css, unsafe_allow_html=True)

    if "conversation" not in st.session_state:
        st.session_state.conversation = None
    if "chat_history" not in st.session_state:
        st.session_state.chat_history = []

    # Title Section
    st.header("Chat with AI Tax Agent :books:")

    # Automatically load and process PDFs on startup
    if st.session_state.conversation is None:
        documents_folder = "./documents/"  # Specify your documents folder path here
        load_and_process_pdfs(documents_folder, huggingface_api_key, grok_api_key, grok_api_base)

    # Chat History Section
    display_chat_history()

    # Input Box Section
    st.text_input(
        "Ask a question about your documents:",
        key='user_question',
        on_change=on_enter
    )

if __name__ == '__main__':
    main()