Spaces:
Sleeping
Sleeping
File size: 6,432 Bytes
5e416e3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 |
import os
import streamlit as st
from dotenv import load_dotenv
from PyPDF2 import PdfReader
from langchain.text_splitter import CharacterTextSplitter
from langchain.embeddings import HuggingFaceEmbeddings # Changed to HuggingFace
from langchain.vectorstores import FAISS
from langchain.chat_models import ChatOpenAI # For LLM
from langchain.memory import ConversationBufferMemory
from langchain.chains import ConversationalRetrievalChain
from htmlTemplates import css, bot_template, user_template
# Function to extract text from PDF documents
def get_pdf_text(pdf_docs):
text = ""
for pdf in pdf_docs:
pdf_reader = PdfReader(pdf)
for page in pdf_reader.pages:
extracted_text = page.extract_text()
if extracted_text:
text += extracted_text
return text
# Function to split text into manageable chunks
def get_text_chunks(text):
text_splitter = CharacterTextSplitter(
separator="\n",
chunk_size=1000,
chunk_overlap=200,
length_function=len
)
chunks = text_splitter.split_text(text)
return chunks
# Function to create a vector store using HuggingFace embeddings
def get_vectorstore(text_chunks, huggingface_api_key):
embeddings = HuggingFaceEmbeddings(
model_name="sentence-transformers/all-MiniLM-L6-v2", # Choose an appropriate model
model_kwargs={"use_auth_token": huggingface_api_key}
)
vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings)
return vectorstore
# Function to initialize the conversational retrieval chain with GrokAI
def get_conversation_chain(vectorstore, grok_api_key, grok_api_base):
llm = ChatOpenAI(
openai_api_key=grok_api_key,
openai_api_base=grok_api_base,
model_name="grok-beta", # Specify GrokAI's model
temperature=0.5
)
memory = ConversationBufferMemory(
memory_key='chat_history', return_messages=True
)
conversation_chain = ConversationalRetrievalChain.from_llm(
llm=llm, # Use the configured GrokAI LLM
retriever=vectorstore.as_retriever(),
memory=memory
)
return conversation_chain
# Function to handle user input and generate responses
def handle_userinput(user_question):
if st.session_state.conversation is None:
st.warning("Documents are still being processed. Please wait.")
return
response = st.session_state.conversation({'question': user_question})
st.session_state.chat_history = response['chat_history']
# Function triggered when the user presses Enter in the input box
def on_enter():
user_question = st.session_state.user_question
if user_question:
handle_userinput(user_question)
st.session_state.user_question = "" # Clear the input box
# Function to load and process PDF documents
def load_and_process_pdfs(folder_path, huggingface_api_key, grok_api_key, grok_api_base):
pdf_files = [file for file in os.listdir(folder_path) if file.lower().endswith('.pdf')]
if not pdf_files:
st.error(f"No PDF files found in the directory: {folder_path}")
return
pdf_docs = []
for file in pdf_files:
file_path = os.path.join(folder_path, file)
pdf_docs.append(file_path)
with st.spinner("Processing documents..."):
# Extract text from PDFs
with st.spinner("Extracting text from PDFs..."):
pdf_file_objects = [open(file, 'rb') for file in pdf_docs]
raw_text = get_pdf_text(pdf_file_objects)
# Close the files after reading
for f in pdf_file_objects:
f.close()
# Split text into chunks
with st.spinner("Splitting text into chunks..."):
text_chunks = get_text_chunks(raw_text)
# Create vector store using HuggingFace embeddings
with st.spinner("Creating vector store..."):
vectorstore = get_vectorstore(text_chunks, huggingface_api_key)
# Initialize conversation chain with GrokAI LLM
with st.spinner("Initializing conversation chain..."):
st.session_state.conversation = get_conversation_chain(vectorstore, grok_api_key, grok_api_base)
st.success("Documents processed successfully!")
# Function to display chat history with auto-scrolling
def display_chat_history():
if st.session_state.chat_history:
for i, message in enumerate(st.session_state.chat_history):
if i % 2 == 0:
st.markdown(user_template.replace("{{MSG}}", message.content), unsafe_allow_html=True)
else:
st.markdown(bot_template.replace("{{MSG}}", message.content), unsafe_allow_html=True)
# Inject JavaScript to scroll the entire page to the bottom
scroll_script = """
<script>
// Function to scroll to the bottom of the page
function scrollToBottom() {
window.scrollTo({ top: document.body.scrollHeight, behavior: 'smooth' });
}
// Delay to ensure the DOM is fully rendered
setTimeout(scrollToBottom, 100);
</script>
"""
st.markdown(scroll_script, unsafe_allow_html=True)
# Main function to run the Streamlit app
def main():
load_dotenv()
# Retrieve credentials from .env
grok_api_key = os.getenv("GROK_API_KEY")
grok_api_base = "https://api.x.ai/v1" # GrokAI's API base URL
huggingface_api_key = os.getenv("HUGGINGFACEHUB_API_TOKEN")
st.set_page_config(page_title="Chat with AI Tax Agent", page_icon=":books:")
st.write(css, unsafe_allow_html=True)
if "conversation" not in st.session_state:
st.session_state.conversation = None
if "chat_history" not in st.session_state:
st.session_state.chat_history = []
# Title Section
st.header("Chat with AI Tax Agent :books:")
# Automatically load and process PDFs on startup
if st.session_state.conversation is None:
documents_folder = "./documents/" # Specify your documents folder path here
load_and_process_pdfs(documents_folder, huggingface_api_key, grok_api_key, grok_api_base)
# Chat History Section
display_chat_history()
# Input Box Section
st.text_input(
"Ask a question about your documents:",
key='user_question',
on_change=on_enter
)
if __name__ == '__main__':
main()
|