File size: 14,730 Bytes
7db401b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9805ef5
7db401b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
import json
import re
import gradio as gr

from dotenv import load_dotenv
load_dotenv()

from .gen_api_answer import (
    get_atla_response,
    get_selene_mini_response,
    parse_selene_mini_response
)

from .prompts import (
    DEFAULT_EVAL_CRITERIA,
    DEFAULT_EVAL_PROMPT,
    DEFAULT_EVAL_PROMPT_EDITABLE,
    ATLA_PROMPT,
    ATLA_PROMPT_WITH_REFERENCE
)

from .random_sample_generation import (
    get_random_human_ai_pair,
    get_random_human_ai_ground_truth_pair,
    generate_ai_response
)   

from common import CSS_STYLES, MAIN_TITLE, HOW_IT_WORKS

def parse_variables(prompt):
    # Extract variables enclosed in double curly braces
    variables = re.findall(r"{{(.*?)}}", prompt)
    # Remove duplicates while preserving order
    seen = set()
    variables = [
        x.strip() for x in variables if not (x.strip() in seen or seen.add(x.strip()))
    ]
    return variables


def get_final_prompt(eval_prompt, variable_values):
    # Replace variables in the eval prompt with their values
    for var, val in variable_values.items():
        eval_prompt = eval_prompt.replace("{{" + var + "}}", val)
    return eval_prompt


def populate_random_example(request: gr.Request, compatible_mode: bool):
    """Generate a random human-AI conversation example and reset judge outputs."""
    if compatible_mode:
        human_msg, ai_msg, ground_truth_msg = get_random_human_ai_ground_truth_pair()
    else:
        human_msg, ai_msg = get_random_human_ai_pair()
        ground_truth_msg = ""
    
    return [
        gr.update(value=human_msg),
        gr.update(value=ai_msg),
        gr.update(value="🎲", variant="secondary"),
        gr.update(value=""),  # Clear score
        gr.update(value=""),  # Clear critique
        gr.update(value=ground_truth_msg, visible=compatible_mode),  # Set ground truth and visibility
    ]


def create_arena_interface():
    with gr.Blocks(theme="default", css=CSS_STYLES) as interface:
        # Hidden eval prompt that will always contain DEFAULT_EVAL_PROMPT
        eval_prompt = gr.Textbox(
            value=DEFAULT_EVAL_PROMPT,
            visible=False
        )
        with gr.Row():
            # Add model selector dropdown at the top
            model_selector = gr.Dropdown(
                choices=["Selene", "Selene Mini"],
                value="Selene",
                label="Choose your Atla Model",
                interactive=True
            )

        with gr.Row():
            # Left side - Input section
            with gr.Column(scale=1):
                with gr.Group():
                    human_input = gr.TextArea(
                        label="πŸ‘© User Input",
                        lines=5,
                        placeholder="Enter the human message here..."
                    )
                    with gr.Row():
                        generate_btn = gr.Button(
                            "Generate AI Response",
                            size="sm",
                            interactive=False
                        )
                    
                    ai_response = gr.TextArea(
                        label="πŸ€– AI Response", 
                        lines=10,
                        placeholder="Enter the AI response here..."
                    )
                    
                    # Ground truth response (initially hidden)
                    ground_truth = gr.TextArea(
                        label="🎯 Ground truth response",
                        lines=10,
                        placeholder="Enter the ground truth response here...",
                        visible=False
                    )
                    
                with gr.Row():
                    random_btn = gr.Button("🎲", scale=2)
                    send_btn = gr.Button(
                        value="Run evaluation",
                        variant="primary",
                        size="lg",
                        scale=8
                    )

            # Right side - Model outputs
            with gr.Column(scale=1):
                gr.Markdown("## πŸ‘©β€βš–οΈ Atla Evaluation")
                with gr.Group():
                    with gr.Row():
                        score = gr.Textbox(label="Score", lines=1, interactive=False)
                    critique = gr.TextArea(label="Critique", lines=12, interactive=False)
        
        gr.Markdown("<br>")
        

        # Replace the "Edit Judge Prompt" Accordion section with:
        with gr.Accordion("πŸ“ Edit Judge Prompt", open=False) as prompt_accordion:
            gr.Markdown("<br>")
            use_reference_toggle = gr.Checkbox(
                label="Use a reference response",
                value=False
            )
            
            # Hide the default prompt editor
            with gr.Column(visible=False) as default_prompt_editor:
                eval_prompt_editable = gr.TextArea(
                    value=DEFAULT_EVAL_PROMPT_EDITABLE,
                    label="Evaluation Criteria",
                    lines=12
                )

                with gr.Row(visible=False) as edit_buttons_row:
                    cancel_prompt_btn = gr.Button("Cancel")
                    save_prompt_btn = gr.Button("Save", variant="primary")
            
            # Show the compatible mode editor
            with gr.Column(visible=True) as compatible_prompt_editor:
                eval_criteria_text = gr.TextArea(
                    label="Evaluation Criteria",
                    lines=12,
                    value=DEFAULT_EVAL_CRITERIA,
                    placeholder="Enter the complete evaluation criteria and scoring rubric..."
                )
                with gr.Row(visible=False) as compatible_edit_buttons_row:
                    compatible_cancel_btn = gr.Button("Cancel")
                    compatible_save_btn = gr.Button("Save", variant="primary")

        eval_prompt_previous = gr.State(value=DEFAULT_EVAL_PROMPT_EDITABLE)  # Initialize with default value
        is_editing = gr.State(False)  # Track editing state
        compatible_mode_state = gr.State(False)  # Track compatible mode state

        # Update model names after responses are generated
        def update_model_names(model_a, model_b):
            return gr.update(value=f"*Model: {model_a}*"), gr.update(
                value=f"*Model: {model_b}*"
            )

        # Store the last submitted prompt and variables for comparison
        last_submission = gr.State({})

        # Update the save/cancel buttons section in the compatible prompt editor
        def save_criteria(new_criteria, previous_criteria):
            return [
                gr.update(value=new_criteria),  # Update the criteria
                new_criteria,  # Update the previous criteria state
                gr.update(visible=False)  # Hide the buttons
            ]

        def cancel_criteria(previous_criteria):
            return [
                gr.update(value=previous_criteria),  # Revert to previous criteria
                previous_criteria,  # Keep the previous criteria state
                gr.update(visible=False)  # Hide the buttons
            ]

        def show_criteria_edit_buttons(current_value, previous_value):
            # Show buttons only if the current value differs from the previous value
            return gr.update(visible=current_value != previous_value)

        # Add handlers for save/cancel buttons and criteria changes
        compatible_save_btn.click(
            fn=save_criteria,
            inputs=[eval_criteria_text, eval_prompt_previous],
            outputs=[eval_criteria_text, eval_prompt_previous, compatible_edit_buttons_row]
        )

        compatible_cancel_btn.click(
            fn=cancel_criteria,
            inputs=[eval_prompt_previous],
            outputs=[eval_criteria_text, eval_prompt_previous, compatible_edit_buttons_row]
        )

        eval_criteria_text.change(
            fn=show_criteria_edit_buttons,
            inputs=[eval_criteria_text, eval_prompt_previous],
            outputs=compatible_edit_buttons_row
        )

        # Function to toggle visibility based on compatible mode
        def toggle_use_reference(checked):
            if checked:
                human_msg, ai_msg, ground_truth_msg = get_random_human_ai_ground_truth_pair()
                return {
                    ground_truth: gr.update(visible=True, value=ground_truth_msg),
                    human_input: gr.update(value=human_msg),
                    ai_response: gr.update(value=ai_msg),
                    score: gr.update(value=""),
                    critique: gr.update(value=""),
                    random_btn: gr.update(value="🎲", variant="secondary"),
                }
            else:
                return {
                    ground_truth: gr.update(visible=False)
                }

        # Update the change handler to include all necessary outputs
        use_reference_toggle.change(
            fn=toggle_use_reference,
            inputs=[use_reference_toggle],
            outputs=[
                ground_truth,
                human_input,
                ai_response,
                score,
                critique,
                random_btn,
            ]
        )

        # Add a new state variable to track first game
        first_game_state = gr.State(True)  # Initialize as True

        # Update the submit function to handle both models
        def submit_and_store(
            model_choice,
            use_reference,
            eval_criteria_text,
            human_input,
            ai_response,
            ground_truth,
        ):
            if model_choice == "Selene Mini":
                # Prepare prompt based on reference mode
                prompt_template = ATLA_PROMPT_WITH_REFERENCE if use_reference else ATLA_PROMPT
                prompt = prompt_template.format(
                    human_input=human_input,
                    ai_response=ai_response,
                    eval_criteria=eval_criteria_text,
                    ground_truth=ground_truth if use_reference else ""
                )
                
                print("\n=== Debug: Prompt being sent to Selene Mini ===")
                print(prompt)
                print("============================================\n")
                
                # Get and parse response
                raw_response = get_selene_mini_response(
                    model_name="AtlaAI/Selene-1-Mini-Llama-3.1-8B",
                    prompt=prompt,
                    max_tokens=500,
                    temperature=0.01
                )
                response = parse_selene_mini_response(raw_response)
            else:
                # Selene API logic
                prompt_data = {
                    'human_input': human_input,
                    'ai_response': ai_response,
                    'ground_truth': ground_truth if use_reference else None,
                    'eval_criteria': eval_criteria_text,
                }
                
                print("\n=== Debug: Prompt data being sent to Selene API ===")
                print(json.dumps(prompt_data, indent=2))
                print("============================================\n")
                
                response = get_atla_response(
                    model_name="AtlaAI/Selene-1-Mini-Llama-3.1-8B",
                    prompt=prompt_data,
                    max_tokens=500,
                    temperature=0.01
                )

            # Response now contains score and critique directly
            if isinstance(response, dict) and 'score' in response and 'critique' in response:
                score = str(response['score'])
                critique = response['critique']
            else:
                score = "Error"
                critique = str(response)

            return [
                score,
                critique,
                gr.update(value="Regenerate evaluation", variant="secondary", interactive=True),
                gr.update(value="🎲"),
            ]

        # Update the send_btn click handler with new input
        send_btn.click(
            fn=submit_and_store,
            inputs=[
                model_selector,
                use_reference_toggle,
                eval_criteria_text,
                human_input,
                ai_response,
                ground_truth,
            ],
            outputs=[
                score,
                critique,
                send_btn,
                random_btn,
            ],
        )

        # Add random button handler
        random_btn.click(
            fn=populate_random_example,
            inputs=[use_reference_toggle],
            outputs=[
                human_input,
                ai_response,
                random_btn,
                score,
                critique,
                ground_truth,
            ]
        )

        # Add input change handlers
        def handle_input_change():
            """Reset UI state when inputs are changed"""
            return [
                gr.update(value="Run evaluation", variant="primary"),  # send_btn
                gr.update(value="🎲", variant="secondary"),  # random_btn
            ]

        # Update the change handlers for inputs
        human_input.change(
            fn=handle_input_change,
            inputs=[],
            outputs=[send_btn, random_btn]
        )

        ai_response.change(
            fn=handle_input_change,
            inputs=[],
            outputs=[send_btn, random_btn]
        )

        generate_btn.click(
            fn=lambda msg: (
                generate_ai_response(msg)[0],  # Only take the response text
                gr.update(
                    value="Generate AI Response",  # Keep the label
                    interactive=False  # Disable the button
                )
            ),
            inputs=[human_input],
            outputs=[ai_response, generate_btn]
        )

        human_input.change(
            fn=lambda x: gr.update(interactive=bool(x.strip())),
            inputs=[human_input],
            outputs=[generate_btn]
        )

        # Update the demo.load to include the random example population
        interface.load(
            fn=lambda: populate_random_example(None, False),  # Pass False for initial compatible_mode
            inputs=[],
            outputs=[
                human_input,
                ai_response,
                random_btn,
                score,
                critique,
                ground_truth,
            ]
        )

    return interface

if __name__ == "__main__":
    demo = create_arena_interface()
    demo.launch()