File size: 5,440 Bytes
7db401b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
from openai import OpenAI
import anthropic
from together import Together
import os       
from atla import Atla
from dotenv import load_dotenv
from .prompts import (
    JUDGE_SYSTEM_PROMPT
)
from transformers import AutoTokenizer
import requests
import json
import re

load_dotenv()

# Initialize clients
anthropic_client = anthropic.Anthropic()
openai_client = OpenAI()
together_client = Together()
hf_api_key = os.getenv("HF_API_KEY")

atla_client = Atla()

def get_openai_response(model_name, prompt, system_prompt=JUDGE_SYSTEM_PROMPT, max_tokens=500, temperature=0):
    """Get response from OpenAI API"""
    try:
        response = openai_client.chat.completions.create(
            model=model_name,
            messages=[
                {"role": "system", "content": system_prompt},
                {"role": "user", "content": prompt},
            ],
            max_completion_tokens=max_tokens,
            temperature=temperature,
        )
        return response.choices[0].message.content
    except Exception as e:
        return f"Error with OpenAI model {model_name}: {str(e)}"

def get_anthropic_response(model_name, prompt, system_prompt=JUDGE_SYSTEM_PROMPT, max_tokens=500, temperature=0):
    """Get response from Anthropic API"""
    try:
        response = anthropic_client.messages.create(
            model=model_name,
            max_tokens=max_tokens,
            temperature=temperature,
            system=system_prompt,
            messages=[{"role": "user", "content": [{"type": "text", "text": prompt}]}],
        )
        return response.content[0].text
    except Exception as e:
        return f"Error with Anthropic model {model_name}: {str(e)}"


def get_atla_response(model_name, prompt, system_prompt=None, max_tokens=500, temperature=0.01):
    """Get response from Atla API"""
    try:
        # Extract components from the prompt data
        model_input = prompt.get('human_input', '')
        model_output = prompt.get('ai_response', '')
        expected_output = prompt.get('ground_truth')
        evaluation_criteria = prompt.get('eval_criteria', '')

        response = atla_client.evaluation.create(
            model_id="atla-selene",
            model_input=model_input,
            model_output=model_output,
            expected_model_output=expected_output if expected_output else None,
            evaluation_criteria=evaluation_criteria,
        )
        
        # Return the score and critique directly
        return {
            "score": response.result.evaluation.score,
            "critique": response.result.evaluation.critique
        }
    except Exception as e:
        return f"Error with Atla model {model_name}: {str(e)}"

def get_selene_mini_response(model_name, prompt, system_prompt=None, max_tokens=500, temperature=0.01):
    """Get response from HF endpoint for Atla model"""
    try:
        headers = {
            "Accept": "application/json",
            "Authorization": f"Bearer {hf_api_key}",
            "Content-Type": "application/json"
        }
        
        # Create messages list for chat template
        messages = []
        if system_prompt:
            messages.append({"role": "system", "content": system_prompt})
        messages.append({"role": "user", "content": prompt})
        
        # Apply chat template
        model_id = "AtlaAI/Selene-1-Mini-Llama-3.1-8B"
        tokenizer = AutoTokenizer.from_pretrained(model_id, token=hf_api_key)
        formatted_prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
        
        payload = {
            "inputs": formatted_prompt,
            "parameters": {
                "max_new_tokens": max_tokens,
                "return_full_text": False,
                "temperature": temperature,
                "seed": 42,
                "add_generation_prompt": True
            }
        }
        
        response = requests.post(
            "https://bkp9p28gri93egqh.us-east-1.aws.endpoints.huggingface.cloud",
            headers=headers,
            json=payload
        )
        return response.json()[0]["generated_text"]
    except Exception as e:
        return f"Error with Atla model {model_name}: {str(e)}"

def parse_selene_mini_response(response_text):
    """Parse the response from Selene Mini to extract score and critique"""
    try:
        # Clean up the response text
        response_text = response_text.strip()
        
        # More flexible regex patterns
        reasoning_pattern = r'\*\*Reasoning:?\*\*\s*(.*?)(?=\*\*Result|$)'
        result_pattern = r'\*\*Result:?\*\*\s*(\d+)'
        
        reasoning_match = re.search(reasoning_pattern, response_text, re.DOTALL | re.IGNORECASE)
        result_match = re.search(result_pattern, response_text, re.IGNORECASE)
        
        if reasoning_match and result_match:
            critique = reasoning_match.group(1).strip()
            score = result_match.group(1)
            return {"score": score, "critique": critique}
        else:
            # If we can't parse it properly, let's return the raw response as critique
            return {
                "score": "Error",
                "critique": f"Failed to parse response. Raw response:\n{response_text}"
            }
    except Exception as e:
        return {
            "score": "Error",
            "critique": f"Error parsing response: {str(e)}\nRaw response:\n{response_text}"
        }