File size: 5,440 Bytes
7db401b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 |
from openai import OpenAI
import anthropic
from together import Together
import os
from atla import Atla
from dotenv import load_dotenv
from .prompts import (
JUDGE_SYSTEM_PROMPT
)
from transformers import AutoTokenizer
import requests
import json
import re
load_dotenv()
# Initialize clients
anthropic_client = anthropic.Anthropic()
openai_client = OpenAI()
together_client = Together()
hf_api_key = os.getenv("HF_API_KEY")
atla_client = Atla()
def get_openai_response(model_name, prompt, system_prompt=JUDGE_SYSTEM_PROMPT, max_tokens=500, temperature=0):
"""Get response from OpenAI API"""
try:
response = openai_client.chat.completions.create(
model=model_name,
messages=[
{"role": "system", "content": system_prompt},
{"role": "user", "content": prompt},
],
max_completion_tokens=max_tokens,
temperature=temperature,
)
return response.choices[0].message.content
except Exception as e:
return f"Error with OpenAI model {model_name}: {str(e)}"
def get_anthropic_response(model_name, prompt, system_prompt=JUDGE_SYSTEM_PROMPT, max_tokens=500, temperature=0):
"""Get response from Anthropic API"""
try:
response = anthropic_client.messages.create(
model=model_name,
max_tokens=max_tokens,
temperature=temperature,
system=system_prompt,
messages=[{"role": "user", "content": [{"type": "text", "text": prompt}]}],
)
return response.content[0].text
except Exception as e:
return f"Error with Anthropic model {model_name}: {str(e)}"
def get_atla_response(model_name, prompt, system_prompt=None, max_tokens=500, temperature=0.01):
"""Get response from Atla API"""
try:
# Extract components from the prompt data
model_input = prompt.get('human_input', '')
model_output = prompt.get('ai_response', '')
expected_output = prompt.get('ground_truth')
evaluation_criteria = prompt.get('eval_criteria', '')
response = atla_client.evaluation.create(
model_id="atla-selene",
model_input=model_input,
model_output=model_output,
expected_model_output=expected_output if expected_output else None,
evaluation_criteria=evaluation_criteria,
)
# Return the score and critique directly
return {
"score": response.result.evaluation.score,
"critique": response.result.evaluation.critique
}
except Exception as e:
return f"Error with Atla model {model_name}: {str(e)}"
def get_selene_mini_response(model_name, prompt, system_prompt=None, max_tokens=500, temperature=0.01):
"""Get response from HF endpoint for Atla model"""
try:
headers = {
"Accept": "application/json",
"Authorization": f"Bearer {hf_api_key}",
"Content-Type": "application/json"
}
# Create messages list for chat template
messages = []
if system_prompt:
messages.append({"role": "system", "content": system_prompt})
messages.append({"role": "user", "content": prompt})
# Apply chat template
model_id = "AtlaAI/Selene-1-Mini-Llama-3.1-8B"
tokenizer = AutoTokenizer.from_pretrained(model_id, token=hf_api_key)
formatted_prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
payload = {
"inputs": formatted_prompt,
"parameters": {
"max_new_tokens": max_tokens,
"return_full_text": False,
"temperature": temperature,
"seed": 42,
"add_generation_prompt": True
}
}
response = requests.post(
"https://bkp9p28gri93egqh.us-east-1.aws.endpoints.huggingface.cloud",
headers=headers,
json=payload
)
return response.json()[0]["generated_text"]
except Exception as e:
return f"Error with Atla model {model_name}: {str(e)}"
def parse_selene_mini_response(response_text):
"""Parse the response from Selene Mini to extract score and critique"""
try:
# Clean up the response text
response_text = response_text.strip()
# More flexible regex patterns
reasoning_pattern = r'\*\*Reasoning:?\*\*\s*(.*?)(?=\*\*Result|$)'
result_pattern = r'\*\*Result:?\*\*\s*(\d+)'
reasoning_match = re.search(reasoning_pattern, response_text, re.DOTALL | re.IGNORECASE)
result_match = re.search(result_pattern, response_text, re.IGNORECASE)
if reasoning_match and result_match:
critique = reasoning_match.group(1).strip()
score = result_match.group(1)
return {"score": score, "critique": critique}
else:
# If we can't parse it properly, let's return the raw response as critique
return {
"score": "Error",
"critique": f"Failed to parse response. Raw response:\n{response_text}"
}
except Exception as e:
return {
"score": "Error",
"critique": f"Error parsing response: {str(e)}\nRaw response:\n{response_text}"
} |