File size: 2,436 Bytes
35407ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
import gradio as gr
import torch
from yolov6 import YOLOV6

# Images
torch.hub.download_url_to_file('https://raw.githubusercontent.com/kadirnar/dethub/main/data/images/highway.jpg', 'highway.jpg')
torch.hub.download_url_to_file('https://user-images.githubusercontent.com/34196005/142742872-1fefcc4d-d7e6-4c43-bbb7-6b5982f7e4ba.jpg', 'highway1.jpg')
    

def yolov6_inference(
    image: gr.inputs.Image = None,
    model_path: gr.inputs.Dropdown = None,
    image_size: gr.inputs.Slider = 640,
    conf_threshold: gr.inputs.Slider = 0.25,
    iou_threshold: gr.inputs.Slider = 0.45,
):
    """
    YOLOv6 inference function
    Args:
        image: Input image
        model_path: Path to the model
        image_size: Image size
        conf_threshold: Confidence threshold
        iou_threshold: IOU threshold
    Returns:
        Rendered image
    """

    model = YOLOV6(model_path, device="cpu", hf_model=True)
    model.conf_thres = conf_threshold
    model.iou_thresh = iou_threshold
    model.save_img = True
    model.font_path = "Arial.ttf"
    pred = model.predict(source=image, img_size=image_size, yaml="coco.yaml")
    return pred
        

inputs = [
    gr.inputs.Image(type="filepath", label="Input Image"),
    gr.inputs.Dropdown(
        label="Model",
        choices=[
            "kadirnar/yolov6n-v3.0",
            "kadirnar/yolov6s-v3.0",
            "kadirnar/yolov6m-v3.0",
            "kadirnar/yolov6l-v3.0",
            "kadirnar/yolov6s6-v3.0",
            "kadirnar/yolov6m6-v3.0",
            "kadirnar/yolov6l6-v3.0",
        ],
        default="kadirnar/yolov6s-v3.0",
    ),
    gr.inputs.Slider(minimum=320, maximum=1280, default=1280, step=32, label="Image Size"),
    gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.25, step=0.05, label="Confidence Threshold"),
    gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.45, step=0.05, label="IOU Threshold"),
]

outputs = gr.outputs.Image(type="filepath", label="Output Image")
title = "YOLOv6: a single-stage object detection framework dedicated to industrial applications."

examples = [['highway1.jpg', 'kadirnar/yolov6m6-v3.0', 1280, 0.25, 0.45],['highway.jpg', 'kadirnar/yolov6s6-v3.0', 1280, 0.25, 0.45]]

demo_app = gr.Interface(
    fn=yolov6_inference,
    inputs=inputs,
    outputs=outputs,
    title=title,
    examples=examples,
    cache_examples=True,
    theme='huggingface',
)
demo_app.launch(debug=True, enable_queue=True)