|
import gradio as gr |
|
import torch |
|
from PIL import Image |
|
from transformers import Qwen2VLForConditionalGeneration, AutoTokenizer, AutoProcessor |
|
from qwen_vl_utils import process_vision_info |
|
import re |
|
|
|
min_pixels = 256 * 28 * 28 |
|
max_pixels = 1280 * 28 * 28 |
|
|
|
def model_inference(images, text): |
|
model = Qwen2VLForConditionalGeneration.from_pretrained( |
|
"Qwen/Qwen2-VL-2B-Instruct", |
|
trust_remote_code=True, |
|
torch_dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float32 |
|
) |
|
processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct", min_pixels=min_pixels,max_pixels=max_pixels) |
|
|
|
images = [{"type": "image", "image": Image.open(image[0])} for image in images] |
|
images.append({"type": "text", "text": text}) |
|
|
|
messages = [{"role": "user", "content": images}] |
|
|
|
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) |
|
image_inputs, video_inputs = process_vision_info(messages) |
|
inputs = processor( |
|
text=[text], |
|
images=image_inputs, |
|
videos=video_inputs, |
|
padding=True, |
|
return_tensors="pt", |
|
) |
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
inputs = inputs.to(device) |
|
model = model.to(device) |
|
|
|
generated_ids = model.generate(**inputs, max_new_tokens=512) |
|
generated_ids_trimmed = [ |
|
out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids) |
|
] |
|
|
|
output_text = processor.batch_decode( |
|
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False |
|
) |
|
|
|
del model |
|
del processor |
|
return output_text[0] |
|
|
|
def search_and_highlight(text, keywords): |
|
if not keywords: |
|
return text |
|
|
|
keywords = [kw.strip().lower() for kw in keywords.split(',')] |
|
highlighted_text = text |
|
|
|
for keyword in keywords: |
|
pattern = re.compile(re.escape(keyword), re.IGNORECASE) |
|
highlighted_text = pattern.sub(f'**{keyword}**', highlighted_text) |
|
|
|
return highlighted_text |
|
|
|
def process_and_search(images, keywords): |
|
extracted_text = model_inference(images, keywords) |
|
|
|
highlighted_text = search_and_highlight(extracted_text, keywords) |
|
|
|
return highlighted_text |
|
|
|
with gr.Blocks(theme=gr.themes.Soft()) as demo: |
|
keywords = gr.Textbox(placeholder="Enter keywords to search (comma-separated)", label="Search Keywords") |
|
output_gallery = gr.Gallery(label="Image", height=600, show_label=True) |
|
|
|
answer_button = gr.Button("Answer and Search", variant="primary") |
|
output = gr.Markdown(label="Output with Highlighted Search Results") |
|
|
|
answer_button.click(process_and_search, inputs=[output_gallery, keywords], outputs=output) |
|
|
|
if __name__ == "__main__": |
|
demo.queue(max_size=10).launch(share=True) |