import gradio as gr import torch from PIL import Image from transformers import Qwen2VLForConditionalGeneration, AutoTokenizer, AutoProcessor from qwen_vl_utils import process_vision_info import re min_pixels = 256 * 28 * 28 max_pixels = 1280 * 28 * 28 def model_inference(images, text): model = Qwen2VLForConditionalGeneration.from_pretrained( "Qwen/Qwen2-VL-2B-Instruct", trust_remote_code=True, torch_dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float32 ) processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct", min_pixels=min_pixels,max_pixels=max_pixels) images = [{"type": "image", "image": Image.open(image[0])} for image in images] images.append({"type": "text", "text": text}) messages = [{"role": "user", "content": images}] text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) image_inputs, video_inputs = process_vision_info(messages) inputs = processor( text=[text], images=image_inputs, videos=video_inputs, padding=True, return_tensors="pt", ) device = "cuda" if torch.cuda.is_available() else "cpu" inputs = inputs.to(device) model = model.to(device) generated_ids = model.generate(**inputs, max_new_tokens=512) generated_ids_trimmed = [ out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids) ] output_text = processor.batch_decode( generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False ) del model del processor return output_text[0] def search_and_highlight(text, keywords): if not keywords: return text keywords = [kw.strip().lower() for kw in keywords.split(',')] highlighted_text = text for keyword in keywords: pattern = re.compile(re.escape(keyword), re.IGNORECASE) highlighted_text = pattern.sub(f'**{keyword}**', highlighted_text) return highlighted_text def process_and_search(images, keywords): extracted_text = model_inference(images, keywords) highlighted_text = search_and_highlight(extracted_text, keywords) return highlighted_text with gr.Blocks(theme=gr.themes.Soft()) as demo: keywords = gr.Textbox(placeholder="Enter keywords to search (comma-separated)", label="Search Keywords") output_gallery = gr.Gallery(label="Image", height=600, show_label=True) answer_button = gr.Button("Answer and Search", variant="primary") output = gr.Markdown(label="Output with Highlighted Search Results") answer_button.click(process_and_search, inputs=[output_gallery, keywords], outputs=output) if __name__ == "__main__": demo.queue(max_size=10).launch(share=True)