import tensorflow as tf
from tensorflow.keras.models import load_model
from PIL import Image
import requests
from io import BytesIO
from matplotlib import pyplot as plt
import numpy as np
import gradio as gr
import json

model = load_model('real-fake-best.h5')

def index(image_url):
    response = requests.get(image_url)
    img = Image.open(BytesIO(response.content))
    img = np.array(img)  

    resize = tf.image.resize(img, (32, 32))

    y_pred = model.predict(np.expand_dims(resize / 255, 0))

    predictions = {"Fake": y_pred[0][0]*100, "Real": y_pred[0][1]*100}

    print("Predictions:", y_pred)
    predicted_class = np.argmax(y_pred)
    print("Predicted Class:", predicted_class)

    return json.dumps(predictions)

inputs_image_url = [
    gr.Textbox(type="text", label="Image URL"),
]

outputs_result_dict = [
    gr.Textbox(type="text", label="Result Dictionary"),
]

interface_image_url = gr.Interface(
    fn=index,
    inputs=inputs_image_url,
    outputs=outputs_result_dict,
    title="AI Image Detection",
    cache_examples=False,
)

gr.TabbedInterface(
    [interface_image_url],
    tab_names=['Image inference']
).queue().launch()


# 0 -> AI
# 1 -> Real

# if y_pred > 0.5:
#     print(f'REAL')
# else:
#     print(f'AI')