Spaces:
Runtime error
Runtime error
Upload folder using huggingface_hub
Browse files- .gitattributes +1 -0
- app.py +37 -23
- g-ocr.py +63 -0
- requirements.txt +5 -1
- rzse0mcqxbgs8z2pf6lr.png +0 -0
- tesseract-ocr-w64-setup-5.3.3.20231005.exe +3 -0
.gitattributes
CHANGED
@@ -37,3 +37,4 @@ en_PP-OCRv3_det_infer/inference.pdiparams filter=lfs diff=lfs merge=lfs -text
|
|
37 |
en_PP-OCRv3_det_infer/inference.pdmodel filter=lfs diff=lfs merge=lfs -text
|
38 |
en_PP-OCRv3_rec_infer/inference.pdiparams filter=lfs diff=lfs merge=lfs -text
|
39 |
en_PP-OCRv3_rec_infer/inference.pdmodel filter=lfs diff=lfs merge=lfs -text
|
|
|
|
37 |
en_PP-OCRv3_det_infer/inference.pdmodel filter=lfs diff=lfs merge=lfs -text
|
38 |
en_PP-OCRv3_rec_infer/inference.pdiparams filter=lfs diff=lfs merge=lfs -text
|
39 |
en_PP-OCRv3_rec_infer/inference.pdmodel filter=lfs diff=lfs merge=lfs -text
|
40 |
+
tesseract-ocr-w64-setup-5.3.3.20231005.exe filter=lfs diff=lfs merge=lfs -text
|
app.py
CHANGED
@@ -1,39 +1,53 @@
|
|
1 |
-
from paddleocr import PaddleOCR
|
2 |
-
import requests
|
3 |
import numpy as np
|
4 |
-
from PIL import Image
|
5 |
-
from io import BytesIO
|
6 |
import json
|
7 |
import gradio as gr
|
8 |
-
import
|
|
|
|
|
9 |
|
10 |
# ocr = PaddleOCR(use_angle_cls=True, lang='en', use_pdserving=False, cls_batch_num=8, det_batch_num=8, rec_batch_num=8)
|
11 |
|
12 |
-
ocr = PaddleOCR(use_angle_cls=True, lang='en')
|
13 |
|
14 |
-
def index(url):
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
|
21 |
-
|
22 |
|
23 |
-
|
24 |
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
|
29 |
-
|
30 |
-
|
31 |
|
32 |
-
|
33 |
-
|
34 |
|
35 |
-
|
|
|
|
|
|
|
|
|
36 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
inputs_image_url = [
|
39 |
gr.Textbox(type="text", label="Image URL"),
|
@@ -49,4 +63,4 @@ interface_image_url = gr.Interface(
|
|
49 |
outputs=outputs_result_json,
|
50 |
title="Text Extraction",
|
51 |
cache_examples=False,
|
52 |
-
).queue().launch()
|
|
|
|
|
|
|
1 |
import numpy as np
|
|
|
|
|
2 |
import json
|
3 |
import gradio as gr
|
4 |
+
import easyocr
|
5 |
+
|
6 |
+
reader = easyocr.Reader(['en'])
|
7 |
|
8 |
# ocr = PaddleOCR(use_angle_cls=True, lang='en', use_pdserving=False, cls_batch_num=8, det_batch_num=8, rec_batch_num=8)
|
9 |
|
10 |
+
# ocr = PaddleOCR(use_angle_cls=True, lang='en')
|
11 |
|
12 |
+
# def index(url):
|
13 |
+
# response = requests.get(url)
|
14 |
+
# img = Image.open(BytesIO(response.content))
|
15 |
+
# resize_factor = 1
|
16 |
+
# new_size = tuple(int(dim * resize_factor) for dim in img.size)
|
17 |
+
# img = img.resize(new_size, Image.Resampling.LANCZOS)
|
18 |
|
19 |
+
# img_array = np.array(img.convert('RGB'))
|
20 |
|
21 |
+
# result = ocr.ocr(img_array)
|
22 |
|
23 |
+
# boxes = [line[0] for line in result]
|
24 |
+
# txts = [line[1][0] for line in result]
|
25 |
+
# scores = [line[1][1] for line in result]
|
26 |
|
27 |
+
# print(boxes)
|
28 |
+
# print(txts)
|
29 |
|
30 |
+
# output_dict = {"texts": txts, "boxes": boxes, "scores": scores}
|
31 |
+
# output_json = json.dumps(output_dict) # Convert to JSON string
|
32 |
|
33 |
+
# return output_json
|
34 |
+
|
35 |
+
|
36 |
+
def index(image_url):
|
37 |
+
result = reader.readtext(image_url)
|
38 |
|
39 |
+
texts = []
|
40 |
+
probs = []
|
41 |
+
|
42 |
+
for (bbox, text, prob) in result:
|
43 |
+
# print(f'Text: {text}, Probability: {prob}')
|
44 |
+
texts.append(text)
|
45 |
+
probs.append(prob)
|
46 |
+
|
47 |
+
output_dict = {"texts": texts, "boxes": probs}
|
48 |
+
output_json = json.dumps(output_dict)
|
49 |
+
|
50 |
+
return output_json
|
51 |
|
52 |
inputs_image_url = [
|
53 |
gr.Textbox(type="text", label="Image URL"),
|
|
|
63 |
outputs=outputs_result_json,
|
64 |
title="Text Extraction",
|
65 |
cache_examples=False,
|
66 |
+
).queue().launch()
|
g-ocr.py
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# import cv2
|
2 |
+
# import pytesseract
|
3 |
+
# import numpy as np
|
4 |
+
|
5 |
+
# image = cv2.imread('rzse0mcqxbgs8z2pf6lr.png')
|
6 |
+
|
7 |
+
# def get_grayscale(image):
|
8 |
+
# return cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
9 |
+
|
10 |
+
# def remove_noise(image):
|
11 |
+
# return cv2.medianBlur(image,5)
|
12 |
+
|
13 |
+
# def thresholding(image):
|
14 |
+
# return cv2.threshold(image, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)[1]
|
15 |
+
|
16 |
+
# def dilate(image):
|
17 |
+
# kernel = np.ones((5,5),np.uint8)
|
18 |
+
# return cv2.dilate(image, kernel, iterations = 1)
|
19 |
+
|
20 |
+
# def erode(image):
|
21 |
+
# kernel = np.ones((5,5),np.uint8)
|
22 |
+
# return cv2.erode(image, kernel, iterations = 1)
|
23 |
+
|
24 |
+
# def opening(image):
|
25 |
+
# kernel = np.ones((5,5),np.uint8)
|
26 |
+
# return cv2.morphologyEx(image, cv2.MORPH_OPEN, kernel)
|
27 |
+
|
28 |
+
# def canny(image):
|
29 |
+
# return cv2.Canny(image, 100, 200)
|
30 |
+
|
31 |
+
# def deskew(image):
|
32 |
+
# coords = np.column_stack(np.where(image > 0))
|
33 |
+
# angle = cv2.minAreaRect(coords)[-1]
|
34 |
+
# if angle < -45:
|
35 |
+
# angle = -(90 + angle)
|
36 |
+
# else:
|
37 |
+
# angle = -angle
|
38 |
+
# (h, w) = image.shape[:2]
|
39 |
+
# center = (w // 2, h // 2)
|
40 |
+
# M = cv2.getRotationMatrix2D(center, angle, 1.0)
|
41 |
+
# rotated = cv2.warpAffine(image, M, (w, h), flags=cv2.INTER_CUBIC, borderMode=cv2.BORDER_REPLICATE)
|
42 |
+
# return rotated
|
43 |
+
|
44 |
+
# def match_template(image, template):
|
45 |
+
# return cv2.matchTemplate(image, template, cv2.TM_CCOEFF_NORMED)
|
46 |
+
|
47 |
+
# custom_config = r'--oem 3 --psm 6'
|
48 |
+
# pytesseract.image_to_string(image, config=custom_config)
|
49 |
+
|
50 |
+
# gray = get_grayscale(image)
|
51 |
+
# thresh = thresholding(gray)
|
52 |
+
# opening = opening(gray)
|
53 |
+
# canny = canny(gray)
|
54 |
+
|
55 |
+
import easyocr
|
56 |
+
|
57 |
+
image_url = 'https://res.cloudinary.com/ddvajyjou/image/upload/v1706960876/rzse0mcqxbgs8z2pf6lr.png'
|
58 |
+
|
59 |
+
reader = easyocr.Reader(['en'])
|
60 |
+
result = reader.readtext(image_url)
|
61 |
+
|
62 |
+
for (bbox, text, prob) in result:
|
63 |
+
print(f'Text: {text}, Probability: {prob}')
|
requirements.txt
CHANGED
@@ -6,4 +6,8 @@ Shapely
|
|
6 |
requests
|
7 |
numpy
|
8 |
pillow
|
9 |
-
gradio
|
|
|
|
|
|
|
|
|
|
6 |
requests
|
7 |
numpy
|
8 |
pillow
|
9 |
+
gradio
|
10 |
+
torch
|
11 |
+
torchvision
|
12 |
+
torchaudio
|
13 |
+
easyocr
|
rzse0mcqxbgs8z2pf6lr.png
ADDED
![]() |
tesseract-ocr-w64-setup-5.3.3.20231005.exe
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:79af1f9153b8ff988baffaa164fc70799950078f887e2c93dc3fa7efed674b21
|
3 |
+
size 50159184
|