File size: 6,636 Bytes
b0e6781 fb2bc19 b0e6781 fb2bc19 b0e6781 fb2bc19 58fd59a fb2bc19 b0e6781 2c6e148 b0e6781 5a03d31 fcedbb9 5a03d31 fb2bc19 fcedbb9 fb2bc19 5a03d31 b0e6781 1fa71e4 36e6ec3 b0e6781 5a03d31 b0e6781 fb2bc19 b0e6781 5a03d31 b0e6781 c27dbcd b0e6781 fb2bc19 b0e6781 fb2bc19 8ac6498 fb2bc19 fcedbb9 fb2bc19 8ac6498 fb2bc19 8ac6498 fb2bc19 8ac6498 fcedbb9 fb2bc19 fcedbb9 8ac6498 fb2bc19 b0e6781 36e6ec3 5a03d31 b0e6781 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 |
import streamlit as st
import pandas as pd
import numpy as np
from streamlit_echarts import st_echarts
from streamlit.components.v1 import html
# from PIL import Image
from app.show_examples import *
import pandas as pd
# huggingface_image = Image.open('style/huggingface.jpg')
# other info
#path = "./AudioBench-Leaderboard/additional_info/Leaderboard-Rename.xlsx"
path = "./additional_info/Leaderboard-Rename.xlsx"
info_df = pd.read_excel(path)
# def nav_to(value):
# try:
# url = links_dic[str(value).lower()]
# js = f'window.open("{url}", "_blank").then(r => window.parent.location.href);'
# st_javascript(js)
# except:
# pass
def draw(folder_name, category_name, dataset_name, metrics):
folder = f"./results/{metrics}/"
display_names = {
'SU': 'Speech Understanding',
'ASU': 'Audio Scene Understanding',
'VU': 'Voice Understanding'
}
data_path = f'{folder}/{category_name.lower()}.csv'
chart_data = pd.read_csv(data_path).round(3)
new_dataset_name = dataset_name.replace('-', '_').lower()
chart_data = chart_data[['Model', new_dataset_name]]
st.markdown("""
<style>
.stMultiSelect [data-baseweb=select] span {
max-width: 800px;
font-size: 0.9rem;
background-color: #3C6478 !important; /* Background color for selected items */
color: white; /* Change text color */
back
}
</style>
""", unsafe_allow_html=True)
# remap model names
display_model_names = {key.strip() :val.strip() for key, val in zip(info_df['AudioBench'], info_df['Proper Display Name'])}
chart_data['Model'] = chart_data['Model'].map(display_model_names)
models = st.multiselect("Please choose the model",
sorted(chart_data['Model'].tolist()),
default = sorted(chart_data['Model'].tolist()))
chart_data = chart_data[chart_data['Model'].isin(models)]
chart_data = chart_data.sort_values(by=[new_dataset_name], ascending=True).dropna(axis=0)
if len(chart_data) == 0:
return
min_value = round(chart_data.iloc[:, 1::].min().min() - 0.1*chart_data.iloc[:, 1::].min().min(), 1)
max_value = round(chart_data.iloc[:, 1::].max().max() + 0.1*chart_data.iloc[:, 1::].max().max(), 1)
options = {
"title": {"text": f"{display_names[folder_name.upper()]}"},
"tooltip": {
"trigger": "axis",
"axisPointer": {"type": "cross", "label": {"backgroundColor": "#6a7985"}},
"triggerOn": 'mousemove',
},
"legend": {"data": ['Overall Accuracy']},
"toolbox": {"feature": {"saveAsImage": {}}},
"grid": {"left": "3%", "right": "4%", "bottom": "3%", "containLabel": True},
"xAxis": [
{
"type": "category",
"boundaryGap": True,
"triggerEvent": True,
"data": chart_data['Model'].tolist(),
}
],
"yAxis": [{"type": "value",
"min": min_value,
"max": max_value,
"boundaryGap": True
# "splitNumber": 10
}],
"series": [{
"name": f"{dataset_name}",
"type": "bar",
"data": chart_data[f'{new_dataset_name}'].tolist(),
}],
}
events = {
"click": "function(params) { return params.value }"
}
value = st_echarts(options=options, events=events, height="500px")
# if value != None:
# # print(value)
# nav_to(value)
# if value != None:
# highlight_table_line(value)
'''
Show table
'''
# st.divider()
with st.container():
# st.write("")
st.markdown('##### TABLE')
custom_css = """
"""
st.markdown(custom_css, unsafe_allow_html=True)
model_link = {key.strip(): val for key, val in zip(info_df['Proper Display Name'], info_df['Link'])}
s = ''
for model in models:
try:
# <td align="center"><input type="checkbox" name="select"></td>
s += f"""<tr>
<td><a href={model_link[model]}>{model}</a></td>
<td>{chart_data[chart_data['Model'] == model][new_dataset_name].tolist()[0]}</td>
</tr>"""
except:
# print(f"{model} is not in {dataset_name}")
continue
# select all function
select_all_function = """<script>
function toggle(source) {
var checkboxes = document.querySelectorAll('input[type="checkbox"]');
for (var i = 0; i < checkboxes.length; i++) {
if (checkboxes[i] != source)
checkboxes[i].checked = source.checked;
}
}
</script>"""
st.markdown(f"""
<div class="select_all">{select_all_function}</div>
""", unsafe_allow_html=True)
info_body_details = f"""
<table style="width:80%">
<thead>
<tr style="text-align: center;">
<th style="width:45%">MODEL</th>
<th style="width:45%">{dataset_name}</th>
</tr>
{s}
</thead>
</table>
"""
#<th style="width:10%"><input type="checkbox" onclick="toggle(this);"></th>
# html_code = custom_css + select_all_function + info_body_details
# html(html_code, height = 300)
st.markdown(f"""
<div class="my-data-table">{info_body_details}</div>
""", unsafe_allow_html=True)
# st.dataframe(chart_data,
# # column_config = {
# # "Link": st.column_config.LinkColumn(
# # display_text= st.image(huggingface_image)
# # ),
# # },
# hide_index = True,
# use_container_width=True)
'''
show samples
'''
if dataset_name in ['Earnings21-Test', 'Earnings22-Test', 'Tedlium3-Long-form-Test']:
pass
else:
show_examples(category_name, dataset_name, chart_data['Model'].tolist())
|