File size: 9,879 Bytes
b0e6781 6a1e601 b0e6781 1d32376 f7d283c fb2bc19 b0e6781 4c1d731 b0e6781 6a1e601 b0e6781 6a1e601 b0e6781 6a1e601 f7d283c 6a1e601 fb2bc19 6a1e601 4c1d731 fb2bc19 6a1e601 fb2bc19 6a1e601 b0e6781 6a1e601 2e7bc8b b0e6781 4c1d731 b0e6781 4c1d731 b0e6781 fb2bc19 4c1d731 6a1e601 fb2bc19 6a1e601 f3cadf1 6a1e601 29fc06d 4c1d731 f92272f 6a1e601 2e7bc8b 101c142 bd0c4d1 101c142 6a1e601 5792938 9224fab f7d283c 2e7bc8b 101c142 2e7bc8b 101c142 f92272f 101c142 c751340 f3cadf1 2e7bc8b f3cadf1 6a1e601 2e7bc8b 6a1e601 f3cadf1 2e7bc8b 4c1d731 f3cadf1 4c1d731 6a1e601 4c1d731 6a1e601 4c1d731 6a1e601 4c1d731 6a1e601 4c1d731 f3cadf1 b0e6781 4c1d731 b0e6781 4c1d731 1d32376 4c1d731 1d32376 4c1d731 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 |
import streamlit as st
import pandas as pd
import numpy as np
import json
from streamlit_echarts import st_echarts
from app.show_examples import *
from app.content import *
import pandas as pd
from model_information import get_dataframe
info_df = get_dataframe()
def draw_table(dataset_displayname, metrics):
dataset_nickname = displayname2datasetname[dataset_displayname]
with open('organize_model_results.json', 'r') as f:
organize_model_results = json.load(f)
model_results = organize_model_results[dataset_nickname][metrics]
model_name_mapping = {key.strip(): val for key, val in zip(info_df['Original Name'], info_df['Proper Display Name'])}
model_results = {model_name_mapping.get(key, key): val for key, val in model_results.items()}
# folder = f"./results_organized/{metrics}/"
# # Load the results from CSV
# data_path = f'{folder}/{category_name.lower()}.csv'
# chart_data = pd.read_csv(data_path).round(3)
# dataset_name = displayname2datasetname[displayname]
# chart_data = chart_data[['Model', dataset_name]]
# # Rename to proper display name
# chart_data = chart_data.rename(columns=datasetname2diaplayname)
# st.markdown("""
# <style>
# .stMultiSelect [data-baseweb=select] span {
# max-width: 800px;
# font-size: 0.9rem;
# background-color: #3C6478 !important; /* Background color for selected items */
# color: white; /* Change text color */
# back
# }
# </style>
# """, unsafe_allow_html=True)
# # remap model names
# display_model_names = {key.strip() :val.strip() for key, val in zip(info_df['Original Name'], info_df['Proper Display Name'])}
# chart_data['model_show'] = chart_data['Model'].map(lambda x: display_model_names.get(x, x))
# models = st.multiselect("Please choose the model",
# sorted(chart_data['model_show'].tolist()),
# default = sorted(chart_data['model_show'].tolist()),
# )
# chart_data = chart_data[chart_data['model_show'].isin(models)]
# chart_data = chart_data.sort_values(by=[displayname], ascending=cus_sort).dropna(axis=0)
# if len(chart_data) == 0: return
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
'''
Show Table
'''
with st.container():
st.markdown('##### TABLE')
model_link_mapping = {key.strip(): val for key, val in zip(info_df['Proper Display Name'], info_df['Link'])}
chart_data_table = pd.DataFrame(list(model_results.items()), columns=["model_show", dataset_displayname])
chart_data_table["model_link"] = chart_data_table["model_show"].map(model_link_mapping)
# chart_data['model_link'] = chart_data['model_show'].map(model_link)
# chart_data_table = chart_data[['model_show', chart_data.columns[1], chart_data.columns[3]]]
# Format numeric columns to 2 decimal places
#chart_data_table[chart_data_table.columns[1]] = chart_data_table[chart_data_table.columns[1]].apply(lambda x: round(float(x), 3) if isinstance(float(x), (int, float)) else float(x))
# dataset_name = chart_data_table.columns[1]
def highlight_first_element(x):
# Create a DataFrame with the same shape as the input
df_style = pd.DataFrame('', index=x.index, columns=x.columns)
df_style.iloc[0, 1] = 'background-color: #b0c1d7'
return df_style
if dataset_displayname in [
'LibriSpeech-Clean',
'LibriSpeech-Other',
'CommonVoice-15-EN',
'Peoples-Speech',
'GigaSpeech-1',
'Earnings-21',
'Earnings-22',
'TED-LIUM-3',
'TED-LIUM-3-LongForm',
'AISHELL-ASR-ZH',
'MNSC-PART1-ASR',
'MNSC-PART2-ASR',
'MNSC-PART3-ASR',
'MNSC-PART4-ASR',
'MNSC-PART5-ASR',
'MNSC-PART6-ASR',
'CNA',
'IDPC',
'Parliament',
'UKUS-News',
'Mediacorp',
'IDPC-Short',
'Parliament-Short',
'UKUS-News-Short',
'Mediacorp-Short',
'YTB-ASR-Batch1',
'YTB-ASR-Batch2',
'SEAME-Dev-Man',
'SEAME-Dev-Sge',
]:
chart_data_table = chart_data_table.sort_values(
by=chart_data_table.columns[1],
ascending=True
).reset_index(drop=True)
else:
chart_data_table = chart_data_table.sort_values(
by=chart_data_table.columns[1],
ascending=False
).reset_index(drop=True)
styled_df = chart_data_table.style.format(
{chart_data_table.columns[1]: "{:.3f}"}
).apply(
highlight_first_element, axis=None
)
st.dataframe(
styled_df,
column_config={
'model_show' : 'Model',
chart_data_table.columns[1]: {'alignment': 'left'},
"model_link" : st.column_config.LinkColumn("Model Link"),
},
hide_index=True,
use_container_width=True
)
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
'''
Show Chart
'''
# Initialize a session state variable for toggling the chart visibility
if "show_chart" not in st.session_state:
st.session_state.show_chart = False
# Create a button to toggle visibility
if st.button("Show Chart"):
st.session_state.show_chart = not st.session_state.show_chart
if st.session_state.show_chart:
with st.container():
st.markdown('##### CHART')
# Get Values
data_values = chart_data_table.iloc[:, 1]
# Calculate Q1 and Q3
q1 = data_values.quantile(0.25)
q3 = data_values.quantile(0.75)
# Calculate IQR
iqr = q3 - q1
# Define lower and upper bounds (1.5*IQR is a common threshold)
lower_bound = q1 - 1.5 * iqr
upper_bound = q3 + 1.5 * iqr
# Filter data within the bounds
filtered_data = data_values[(data_values >= lower_bound) & (data_values <= upper_bound)]
# Calculate min and max values after outlier handling
min_value = round(filtered_data.min() - 0.1 * filtered_data.min(), 3)
max_value = round(filtered_data.max() + 0.1 * filtered_data.max(), 3)
options = {
# "title": {"text": f"{dataset_name}"},
"tooltip": {
"trigger": "axis",
"axisPointer": {"type": "cross", "label": {"backgroundColor": "#6a7985"}},
"triggerOn": 'mousemove',
},
"legend": {"data": ['Overall Accuracy']},
"toolbox": {"feature": {"saveAsImage": {}}},
"grid": {"left": "3%", "right": "4%", "bottom": "3%", "containLabel": True},
"xAxis": [
{
"type": "category",
"boundaryGap": True,
"triggerEvent": True,
"data": chart_data_table['model_show'].tolist(),
}
],
"yAxis": [{"type": "value",
"min": min_value,
"max": max_value,
"boundaryGap": True
# "splitNumber": 10
}],
"series": [{
"name": f"{dataset_nickname}",
"type": "bar",
"data": chart_data_table[f'{dataset_displayname}'].tolist(),
}],
}
events = {
"click": "function(params) { return params.value }"
}
value = st_echarts(options=options, events=events, height="500px")
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
'''
Show Examples
'''
# Initialize a session state variable for toggling the chart visibility
if "show_examples" not in st.session_state:
st.session_state.show_examples = False
# Create a button to toggle visibility
if st.button("Show Examples"):
st.session_state.show_examples = not st.session_state.show_examples
if st.session_state.show_examples:
st.markdown('To be implemented')
# # if dataset_name in ['Earnings21-Test', 'Earnings22-Test', 'Tedlium3-Test', 'Tedlium3-Long-form-Test']:
# if dataset_name in []:
# pass
# else:
# show_examples(category_name, dataset_name, chart_data['Model'].tolist(), display_model_names)
|