File size: 12,003 Bytes
62dd38d
f7d283c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7e115ec
 
7f996b6
 
 
 
5263392
 
 
7e115ec
f7d283c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
166575b
 
 
f7d283c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0688ab3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f996b6
 
 
 
5263392
 
 
 
7f996b6
f7d283c
 
 
 
 
 
 
 
 
 
 
7e115ec
f7d283c
 
 
6a1e601
166575b
fa6ba7b
1d32376
 
47888f7
 
 
 
 
c45bef7
1d32376
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176

displayname2datasetname = {
    'LibriSpeech-Clean'    : 'librispeech_test_clean',
    'LibriSpeech-Other'    : 'librispeech_test_other',
    'CommonVoice-15-EN'    : 'common_voice_15_en_test',
    'Peoples-Speech'       : 'peoples_speech_test',
    'GigaSpeech-1'         : 'gigaspeech_test',
    'Earnings-21'          : 'earnings21_test',
    'Earnings-22'          : 'earnings22_test',
    'TED-LIUM-3'           : 'tedlium3_test',
    'TED-LIUM-3-LongForm'  : 'tedlium3_long_form_test',
    'AISHELL-ASR-ZH'       : 'aishell_asr_zh_test',
    'CoVoST2-EN-ID'        : 'covost2_en_id_test',
    'CoVoST2-EN-ZH'        : 'covost2_en_zh_test',
    'CoVoST2-EN-TA'        : 'covost2_en_ta_test',
    'CoVoST2-ID-EN'        : 'covost2_id_en_test',
    'CoVoST2-ZH-EN'        : 'covost2_zh_en_test',
    'CoVoST2-TA-EN'        : 'covost2_ta_en_test',
    'CN-College-Listen-MCQ': 'cn_college_listen_mcq_test',
    'DREAM-TTS-MCQ'        : 'dream_tts_mcq_test',
    'SLUE-P2-SQA5'         : 'slue_p2_sqa5_test',
    'Public-SG-Speech-QA'  : 'public_sg_speech_qa_test',
    'Spoken-SQuAD'         : 'spoken_squad_test',
    'OpenHermes-Audio'     : 'openhermes_audio_test',
    'ALPACA-Audio'         : 'alpaca_audio_test',
    'WavCaps'              : 'wavcaps_test',
    'AudioCaps'            : 'audiocaps_test',
    'Clotho-AQA'           : 'clotho_aqa_test',
    'WavCaps-QA'           : 'wavcaps_qa_test',
    'AudioCaps-QA'         : 'audiocaps_qa_test',
    'VoxCeleb-Accent'      : 'voxceleb_accent_test',
    'MNSC-AR-Sentence'     : 'imda_ar_sentence',
    'MNSC-AR-Dialogue'     : 'imda_ar_dialogue',
    'VoxCeleb-Gender'      : 'voxceleb_gender_test',
    'IEMOCAP-Gender'       : 'iemocap_gender_test',
    'IEMOCAP-Emotion'      : 'iemocap_emotion_test',
    'MELD-Sentiment'       : 'meld_sentiment_test',
    'MELD-Emotion'         : 'meld_emotion_test',
    'MuChoMusic'           : 'muchomusic_test',
    'MNSC-PART1-ASR'       : 'imda_part1_asr_test',
    'MNSC-PART2-ASR'       : 'imda_part2_asr_test',
    'MNSC-PART3-ASR'       : 'imda_part3_30s_asr_test',
    'MNSC-PART4-ASR'       : 'imda_part4_30s_asr_test',
    'MNSC-PART5-ASR'       : 'imda_part5_30s_asr_test',
    'MNSC-PART6-ASR'       : 'imda_part6_30s_asr_test',
    'MNSC-PART3-SQA'       : 'imda_part3_30s_sqa_human_test',
    'MNSC-PART4-SQA'       : 'imda_part4_30s_sqa_human_test',
    'MNSC-PART5-SQA'       : 'imda_part5_30s_sqa_human_test',
    'MNSC-PART6-SQA'       : 'imda_part6_30s_sqa_human_test',
    'MNSC-PART3-SDS'       : 'imda_part3_30s_ds_human_test',
    'MNSC-PART4-SDS'       : 'imda_part4_30s_ds_human_test',
    'MNSC-PART5-SDS'       : 'imda_part5_30s_ds_human_test',
    'MNSC-PART6-SDS'       : 'imda_part6_30s_ds_human_test',
    'SEAME-Dev-Man'        : 'seame_dev_man',
    'SEAME-Dev-Sge'        : 'seame_dev_sge',
    'MMAU-mini'            : 'mmau_mini',
    'MMAU-mini-music'      : 'mmau_mini_music',
    'MMAU-mini-sound'      : 'mmau_mini_sound',
    'MMAU-mini-speech'     : 'mmau_mini_speech',
    'GigaSpeech2-Indo'     : 'gigaspeech2_indo',
    'GigaSpeech2-Thai'     : 'gigaspeech2_thai',
    'GigaSpeech2-Viet'     : 'gigaspeech2_viet',

    'CNA'             : 'cna_test',
    'IDPC'            : 'idpc_test',
    'Parliament'      : 'parliament_test',
    'UKUS-News'       : 'ukusnews_test',
    'Mediacorp'       : 'mediacorp_test',
    'IDPC-Short'      : 'idpc_short_test',
    'Parliament-Short': 'parliament_short_test',
    'UKUS-News-Short' : 'ukusnews_short_test',
    'Mediacorp-Short' : 'mediacorp_short_test',
    'YTB-ASR-Batch1'  : 'ytb_asr_batch1',
    'YTB-ASR-Batch2'  : 'ytb_asr_batch2',

    'YTB-SQA-Batch1': 'ytb_sqa_batch1',
    'YTB-SDS-Batch1': 'ytb_sds_batch1',
    'YTB-PQA-Batch1': 'ytb_pqa_batch1',

}

datasetname2diaplayname = {datasetname: displayname for displayname, datasetname in displayname2datasetname.items()}


dataset_diaplay_information = {
    'LibriSpeech-Clean'    : 'A clean, high-quality testset of the LibriSpeech dataset, used for ASR testing.',
    'LibriSpeech-Other'    : 'A more challenging, noisier testset of the LibriSpeech dataset for ASR testing.',
    'CommonVoice-15-EN'    : 'Test set from the Common Voice project, which is a crowd-sourced, multilingual speech dataset.',
    'Peoples-Speech'       : 'A large-scale, open-source speech recognition dataset, with diverse accents and domains.',
    'GigaSpeech-1'         : 'A large-scale ASR dataset with diverse audio sources like podcasts, interviews, etc.',
    'Earnings-21'          : 'ASR test dataset focused on earnings calls from 2021, with professional speech and financial jargon.',
    'Earnings-22'          : 'Similar to Earnings21, but covering earnings calls from 2022.',
    'TED-LIUM-3'           : 'A test set derived from TED talks, covering diverse speakers and topics.',
    'TED-LIUM-3-LongForm'  : 'A longer version of the TED-LIUM dataset, containing extended audio samples. This poses challenges to existing fusion methods in handling long audios. However, it provides benchmark for future development.',
    'AISHELL-ASR-ZH'       : 'ASR test dataset for Mandarin Chinese, based on the Aishell dataset.',
    'CoVoST2-EN-ID'        : 'CoVoST 2 dataset for speech translation from English to Indonesian.',
    'CoVoST2-EN-ZH'        : 'CoVoST 2 dataset for speech translation from English to Chinese.',
    'CoVoST2-EN-TA'        : 'CoVoST 2 dataset for speech translation from English to Tamil.',
    'CoVoST2-ID-EN'        : 'CoVoST 2 dataset for speech translation from Indonesian to English.',
    'CoVoST2-ZH-EN'        : 'CoVoST 2 dataset for speech translation from Chinese to English.',
    'CoVoST2-TA-EN'        : 'CoVoST 2 dataset for speech translation from Tamil to English.',
    'CN-College-Listen-MCQ': 'Chinese College English Listening Test, with multiple-choice questions.',
    'DREAM-TTS-MCQ'        : 'DREAM dataset for spoken question-answering, derived from textual data and synthesized speech.',
    'SLUE-P2-SQA5'         : 'Spoken Language Understanding Evaluation (SLUE) dataset, part 2, focused on QA tasks.',
    'Public-SG-Speech-QA'  : 'Public dataset for speech-based question answering, gathered from Singapore.',
    'Spoken-SQuAD'         : 'Spoken SQuAD dataset, based on the textual SQuAD dataset, converted into audio.',
    'OpenHermes-Audio'     : 'Test set for spoken instructions. Synthesized from the OpenHermes dataset.',
    'ALPACA-Audio'         : 'Spoken version of the ALPACA dataset, used for evaluating instruction following in audio.',
    'WavCaps'              : 'WavCaps is a dataset for testing audio captioning, where models generate textual descriptions of audio clips.',
    'AudioCaps'            : 'AudioCaps dataset, used for generating captions from general audio events.',
    'Clotho-AQA'           : 'Clotho dataset adapted for audio-based question answering, containing audio clips and questions.',
    'WavCaps-QA'           : 'Question-answering test dataset derived from WavCaps, focusing on audio content.',
    'AudioCaps-QA'         : 'AudioCaps adapted for question-answering tasks, using audio events as input for Q&A.',
    'VoxCeleb-Accent'      : 'Test dataset for accent recognition, based on VoxCeleb, a large speaker identification dataset.',
    'MNSC-AR-Sentence'     : 'Accent recognition based on the IMDA NSC dataset, focusing on sentence-level accents.',
    'MNSC-AR-Dialogue'     : 'Accent recognition based on the IMDA NSC dataset, focusing on dialogue-level accents.',
    'VoxCeleb-Gender'      : 'Test dataset for gender classification, also derived from VoxCeleb.',
    'IEMOCAP-Gender'       : 'Gender classification based on the IEMOCAP dataset.',
    'IEMOCAP-Emotion'      : 'Emotion recognition test data from the IEMOCAP dataset, focusing on identifying emotions in speech.',
    'MELD-Sentiment'       : 'Sentiment recognition from speech using the MELD dataset, classifying positive, negative, or neutral sentiments.',
    'MELD-Emotion'         : 'Emotion classification in speech using MELD, detecting specific emotions like happiness, anger, etc.',
    'MuChoMusic'           : 'Test dataset for music understanding, from paper: MuChoMusic: Evaluating Music Understanding in Multimodal Audio-Language Models.',
    'MNSC-PART1-ASR'       : 'Speech recognition test data from the IMDA NSC project, Part 1.',
    'MNSC-PART2-ASR'       : 'Speech recognition test data from the IMDA NSC project, Part 2.',
    'MNSC-PART3-ASR'       : 'Speech recognition test data from the IMDA NSC project, Part 3.',
    'MNSC-PART4-ASR'       : 'Speech recognition test data from the IMDA NSC project, Part 4.',
    'MNSC-PART5-ASR'       : 'Speech recognition test data from the IMDA NSC project, Part 5.',
    'MNSC-PART6-ASR'       : 'Speech recognition test data from the IMDA NSC project, Part 6.',
    'MNSC-PART3-SQA'       : 'Multitak National Speech Corpus (MNSC) dataset, Question answering task, Part 3.',
    'MNSC-PART4-SQA'       : 'Multitak National Speech Corpus (MNSC) dataset, Question answering task, Part 4.',
    'MNSC-PART5-SQA'       : 'Multitak National Speech Corpus (MNSC) dataset, Question answering task, Part 5.',
    'MNSC-PART6-SQA'       : 'Multitak National Speech Corpus (MNSC) dataset, Question answering task, Part 6.',
    'MNSC-PART3-SDS'       : 'Multitak National Speech Corpus (MNSC) dataset, dialogue summarization task, Part 3.',
    'MNSC-PART4-SDS'       : 'Multitak National Speech Corpus (MNSC) dataset, dialogue summarization task, Part 4.',
    'MNSC-PART5-SDS'       : 'Multitak National Speech Corpus (MNSC) dataset, dialogue summarization task, Part 5.',
    'MNSC-PART6-SDS'       : 'Multitak National Speech Corpus (MNSC) dataset, dialogue summarization task, Part 6.',
    'SEAME-Dev-Man'        : 'SEAME dataset, English-Mandarin Code-swithcing',
    'SEAME-Dev-Sge'        : 'SEAME dataset, English-Mandarin Code-swithcing',
    'MMAU-mini'            : 'MMAU Dataset, Mini version, MMAU: A Massive Multi-Task Audio Understanding and Reasoning Benchmark',
    'MMAU-mini-music'      : 'MMAU Dataset, Mini version, MMAU: A Massive Multi-Task Audio Understanding and Reasoning Benchmark',
    'MMAU-mini-sound'      : 'MMAU Dataset, Mini version, MMAU: A Massive Multi-Task Audio Understanding and Reasoning Benchmark',
    'MMAU-mini-speech'     : 'MMAU Dataset, Mini version, MMAU: A Massive Multi-Task Audio Understanding and Reasoning Benchmark',
    'GigaSpeech2-Indo'     : 'GigaSpeech ASR dataset for Indonesian.',
    'GigaSpeech2-Thai'     : 'GigaSpeech ASR dataset for Thai.',
    'GigaSpeech2-Viet'     : 'GigaSpeech ASR dataset for Vietnamese.',


    'CNA'             : 'Under Development',
    'IDPC'            : 'Under Development',
    'Parliament'      : 'Under Development',
    'UKUS-News'       : 'Under Development',
    'Mediacorp'       : 'Under Development',
    'IDPC-Short'      : 'Under Development',
    'Parliament-Short': 'Under Development',
    'UKUS-News-Short' : 'Under Development',
    'Mediacorp-Short' : 'Under Development',
    'YTB-ASR-Batch1'  : 'Under Development',
    'YTB-ASR-Batch2'  : 'Under Development',

    'YTB-SQA-Batch1': 'Under Development',
    'YTB-SDS-Batch1': 'Under Development',
    'YTB-PQA-Batch1': 'Under Development',
    }



metrics_info = {
    'wer'             : 'Word Error Rate (WER) - The Lower, the better.',
    'llama3_70b_judge': 'Model-as-a-Judge Peformance. Using LLAMA-3-70B. Scale from 0-100. The higher, the better.',
    'meteor'          : 'METEOR Score. The higher, the better.',
    'bleu'            : 'BLEU Score. The higher, the better.',
    'string_match'    : 'From MMAU paper, after model generating the answer, the correctness is determined by string matching algorithm. https://github.com/Sakshi113/MMAU/blob/main/evaluation.py',
    'gpt4o_judge'    : 'Model-as-a-Judge Peformance. Using GPT4o. Scale from 0-100. The higher, the better. For multiple-choice questions, it reflects accuracy.',
}