Spaces:
Runtime error
Runtime error
Add audio search
Browse files- .gitignore +153 -0
- app.py +44 -12
.gitignore
ADDED
@@ -0,0 +1,153 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Byte-compiled / optimized / DLL files
|
2 |
+
__pycache__/
|
3 |
+
*.py[cod]
|
4 |
+
*$py.class
|
5 |
+
|
6 |
+
# C extensions
|
7 |
+
*.so
|
8 |
+
|
9 |
+
# Distribution / packaging
|
10 |
+
.Python
|
11 |
+
build/
|
12 |
+
develop-eggs/
|
13 |
+
dist/
|
14 |
+
downloads/
|
15 |
+
eggs/
|
16 |
+
.eggs/
|
17 |
+
lib/
|
18 |
+
lib64/
|
19 |
+
parts/
|
20 |
+
sdist/
|
21 |
+
var/
|
22 |
+
wheels/
|
23 |
+
share/python-wheels/
|
24 |
+
*.egg-info/
|
25 |
+
.installed.cfg
|
26 |
+
*.egg
|
27 |
+
MANIFEST
|
28 |
+
|
29 |
+
# PyInstaller
|
30 |
+
# Usually these files are written by a python script from a template
|
31 |
+
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
32 |
+
*.manifest
|
33 |
+
*.spec
|
34 |
+
|
35 |
+
# Installer logs
|
36 |
+
pip-log.txt
|
37 |
+
pip-delete-this-directory.txt
|
38 |
+
|
39 |
+
# Unit test / coverage reports
|
40 |
+
htmlcov/
|
41 |
+
.tox/
|
42 |
+
.nox/
|
43 |
+
.coverage
|
44 |
+
.coverage.*
|
45 |
+
.cache
|
46 |
+
nosetests.xml
|
47 |
+
coverage.xml
|
48 |
+
*.cover
|
49 |
+
*.py,cover
|
50 |
+
.hypothesis/
|
51 |
+
.pytest_cache/
|
52 |
+
cover/
|
53 |
+
|
54 |
+
# Translations
|
55 |
+
*.mo
|
56 |
+
*.pot
|
57 |
+
|
58 |
+
# Django stuff:
|
59 |
+
*.log
|
60 |
+
local_settings.py
|
61 |
+
db.sqlite3
|
62 |
+
db.sqlite3-journal
|
63 |
+
|
64 |
+
# Flask stuff:
|
65 |
+
instance/
|
66 |
+
.webassets-cache
|
67 |
+
|
68 |
+
# Scrapy stuff:
|
69 |
+
.scrapy
|
70 |
+
|
71 |
+
# Sphinx documentation
|
72 |
+
docs/_build/
|
73 |
+
|
74 |
+
# PyBuilder
|
75 |
+
.pybuilder/
|
76 |
+
target/
|
77 |
+
|
78 |
+
# Jupyter Notebook
|
79 |
+
.ipynb_checkpoints
|
80 |
+
|
81 |
+
# IPython
|
82 |
+
profile_default/
|
83 |
+
ipython_config.py
|
84 |
+
|
85 |
+
# pyenv
|
86 |
+
# For a library or package, you might want to ignore these files since the code is
|
87 |
+
# intended to run in multiple environments; otherwise, check them in:
|
88 |
+
# .python-version
|
89 |
+
|
90 |
+
# pipenv
|
91 |
+
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
92 |
+
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
93 |
+
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
94 |
+
# install all needed dependencies.
|
95 |
+
#Pipfile.lock
|
96 |
+
|
97 |
+
# poetry
|
98 |
+
# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
|
99 |
+
# This is especially recommended for binary packages to ensure reproducibility, and is more
|
100 |
+
# commonly ignored for libraries.
|
101 |
+
# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
|
102 |
+
#poetry.lock
|
103 |
+
|
104 |
+
# pdm
|
105 |
+
# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
|
106 |
+
#pdm.lock
|
107 |
+
# pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
|
108 |
+
# in version control.
|
109 |
+
# https://pdm.fming.dev/#use-with-ide
|
110 |
+
.pdm.toml
|
111 |
+
|
112 |
+
# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
|
113 |
+
__pypackages__/
|
114 |
+
|
115 |
+
# Celery stuff
|
116 |
+
celerybeat-schedule
|
117 |
+
celerybeat.pid
|
118 |
+
|
119 |
+
# SageMath parsed files
|
120 |
+
*.sage.py
|
121 |
+
|
122 |
+
# Environments
|
123 |
+
.env
|
124 |
+
.venv
|
125 |
+
env/
|
126 |
+
venv/
|
127 |
+
ENV/
|
128 |
+
env.bak/
|
129 |
+
venv.bak/
|
130 |
+
|
131 |
+
# Spyder project settings
|
132 |
+
.spyderproject
|
133 |
+
.spyproject
|
134 |
+
|
135 |
+
# Rope project settings
|
136 |
+
.ropeproject
|
137 |
+
|
138 |
+
# mkdocs documentation
|
139 |
+
/site
|
140 |
+
|
141 |
+
# mypy
|
142 |
+
.mypy_cache/
|
143 |
+
.dmypy.json
|
144 |
+
dmypy.json
|
145 |
+
|
146 |
+
# Pyre type checker
|
147 |
+
.pyre/
|
148 |
+
|
149 |
+
# pytype static type analyzer
|
150 |
+
.pytype/
|
151 |
+
|
152 |
+
# Cython debug symbols
|
153 |
+
cython_debug/
|
app.py
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
from transformers import ClapModel, ClapProcessor
|
2 |
import gradio as gr
|
3 |
import torch
|
4 |
import torchaudio
|
@@ -9,7 +9,8 @@ from qdrant_client.http.models import Distance, VectorParams
|
|
9 |
from qdrant_client.http import models
|
10 |
|
11 |
|
12 |
-
|
|
|
13 |
|
14 |
|
15 |
class ClapSSGradio():
|
@@ -25,7 +26,7 @@ class ClapSSGradio():
|
|
25 |
|
26 |
self.model = ClapModel.from_pretrained(
|
27 |
f"Audiogen/{name}", use_auth_token=os.getenv('HUGGINGFACE_API_TOKEN'))
|
28 |
-
self.
|
29 |
f"Audiogen/{name}", use_auth_token=os.getenv('HUGGINGFACE_API_TOKEN'))
|
30 |
|
31 |
self.sas_token = os.environ['AZURE_SAS_TOKEN']
|
@@ -40,15 +41,41 @@ class ClapSSGradio():
|
|
40 |
# print(self.client.get_collection(collection_name=self.name))
|
41 |
|
42 |
@torch.no_grad()
|
43 |
-
def _embed_query(self, query):
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
results = self.client.search(
|
50 |
collection_name=self.name,
|
51 |
-
query_vector=self._embed_query(query),
|
52 |
limit=self.k,
|
53 |
score_threshold=threshold,
|
54 |
)
|
@@ -94,14 +121,19 @@ class ClapSSGradio():
|
|
94 |
with gr.Row():
|
95 |
with gr.Column(variant='panel'):
|
96 |
search = gr.Textbox(placeholder='Search Samples')
|
97 |
-
float_input = gr.Number(
|
|
|
|
|
|
|
|
|
98 |
with gr.Column():
|
99 |
audioboxes = []
|
100 |
gr.Markdown("Output")
|
101 |
for i in range(self.k):
|
102 |
t = gr.components.Audio(label=f"{i}", visible=True)
|
103 |
audioboxes.append(t)
|
104 |
-
|
|
|
105 |
ui.launch(share=share)
|
106 |
|
107 |
|
|
|
1 |
+
from transformers import ClapModel, ClapProcessor, AutoFeatureExtractor
|
2 |
import gradio as gr
|
3 |
import torch
|
4 |
import torchaudio
|
|
|
9 |
from qdrant_client.http import models
|
10 |
|
11 |
|
12 |
+
import dotenv
|
13 |
+
dotenv.load_dotenv()
|
14 |
|
15 |
|
16 |
class ClapSSGradio():
|
|
|
26 |
|
27 |
self.model = ClapModel.from_pretrained(
|
28 |
f"Audiogen/{name}", use_auth_token=os.getenv('HUGGINGFACE_API_TOKEN'))
|
29 |
+
self.processor = ClapProcessor.from_pretrained(
|
30 |
f"Audiogen/{name}", use_auth_token=os.getenv('HUGGINGFACE_API_TOKEN'))
|
31 |
|
32 |
self.sas_token = os.environ['AZURE_SAS_TOKEN']
|
|
|
41 |
# print(self.client.get_collection(collection_name=self.name))
|
42 |
|
43 |
@torch.no_grad()
|
44 |
+
def _embed_query(self, query, audio_file):
|
45 |
+
if audio_file is not None:
|
46 |
+
waveform, sample_rate = torchaudio.load(audio_file.name)
|
47 |
+
print("Waveform shape:", waveform.shape)
|
48 |
+
waveform = torchaudio.functional.resample(
|
49 |
+
waveform, sample_rate, 48000)
|
50 |
+
print("Resampled waveform shape:", waveform.shape)
|
51 |
+
|
52 |
+
if waveform.shape[-1] < 480000:
|
53 |
+
waveform = torch.nn.functional.pad(
|
54 |
+
waveform, (0, 48000 - waveform.shape[-1]))
|
55 |
+
elif waveform.shape[-1] > 480000:
|
56 |
+
waveform = waveform[..., :480000]
|
57 |
+
|
58 |
+
audio_prompt_features = self.processor(
|
59 |
+
audios=waveform.mean(0), return_tensors='pt', sampling_rate=48000
|
60 |
+
)['input_features']
|
61 |
+
print("Audio prompt features shape:", audio_prompt_features.shape)
|
62 |
+
e = self.model.get_audio_features(
|
63 |
+
input_features=audio_prompt_features)[0]
|
64 |
+
|
65 |
+
if any(torch.isnan(e)):
|
66 |
+
raise ValueError("Audio features are NaN")
|
67 |
+
print("Embeddings: ", e.shape)
|
68 |
+
return e
|
69 |
+
else:
|
70 |
+
inputs = self.processor(
|
71 |
+
query, return_tensors="pt", padding='max_length', max_length=77, truncation=True)
|
72 |
+
|
73 |
+
return self.model.get_text_features(**inputs).cpu().numpy().tolist()[0]
|
74 |
+
|
75 |
+
def _similarity_search(self, query, threshold, audio_file):
|
76 |
results = self.client.search(
|
77 |
collection_name=self.name,
|
78 |
+
query_vector=self._embed_query(query, audio_file),
|
79 |
limit=self.k,
|
80 |
score_threshold=threshold,
|
81 |
)
|
|
|
121 |
with gr.Row():
|
122 |
with gr.Column(variant='panel'):
|
123 |
search = gr.Textbox(placeholder='Search Samples')
|
124 |
+
float_input = gr.Number(
|
125 |
+
label='Similarity threshold [min: 0.1 max: 1]', value=0.5, minimum=0.1, maximum=1)
|
126 |
+
audio_file = gr.File(
|
127 |
+
label='Upload an Audio File', type="file")
|
128 |
+
search_button = gr.Button("Search", label='Search')
|
129 |
with gr.Column():
|
130 |
audioboxes = []
|
131 |
gr.Markdown("Output")
|
132 |
for i in range(self.k):
|
133 |
t = gr.components.Audio(label=f"{i}", visible=True)
|
134 |
audioboxes.append(t)
|
135 |
+
search_button.click(fn=self._similarity_search, inputs=[
|
136 |
+
search, float_input, audio_file], outputs=audioboxes)
|
137 |
ui.launch(share=share)
|
138 |
|
139 |
|