File size: 10,079 Bytes
81e13bb
 
 
 
 
 
3bb9361
f8afc9b
81e13bb
 
 
 
 
 
f8afc9b
 
81e13bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f8afc9b
 
81e13bb
 
 
 
 
 
 
f8afc9b
 
81e13bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f8afc9b
81e13bb
f8afc9b
81e13bb
 
 
 
 
 
 
 
f8afc9b
 
 
 
 
 
 
 
81e13bb
 
 
f8afc9b
 
 
 
 
81e13bb
 
 
 
 
 
 
 
 
 
 
 
 
3bb9361
 
 
81e13bb
3bb9361
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81e13bb
3bb9361
81e13bb
 
3bb9361
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81e13bb
 
3bb9361
 
81e13bb
3bb9361
81e13bb
3bb9361
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81e13bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f8afc9b
 
 
 
 
 
 
 
 
3bb9361
 
f8afc9b
 
 
81e13bb
f8afc9b
81e13bb
3bb9361
 
 
 
 
 
 
81e13bb
 
3bb9361
81e13bb
 
f8afc9b
3bb9361
 
 
 
f8afc9b
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
from fastapi import FastAPI, File, UploadFile, HTTPException
from fastapi.middleware.cors import CORSMiddleware
from typing import Dict
import os
import shutil
import logging
from s3_setup import s3_client
 
import torch
from transformers import LayoutLMv3Processor, LayoutLMv3ForTokenClassification

from dotenv import load_dotenv
import os

from utils import doc_processing

# Load .env file
load_dotenv()

# Access variables
dummy_key = os.getenv("dummy_key")
HUGGINGFACE_AUTH_TOKEN = dummy_key


# Hugging Face model and token
aadhar_model = "AuditEdge/doc_ocr_a"  # Replace with your fine-tuned model if applicable
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")

# Load the processor (tokenizer + image processor)
processor_aadhar = LayoutLMv3Processor.from_pretrained(
    aadhar_model,
    use_auth_token=HUGGINGFACE_AUTH_TOKEN
)
aadhar_model = LayoutLMv3ForTokenClassification.from_pretrained(
    aadhar_model,
    use_auth_token=HUGGINGFACE_AUTH_TOKEN
)


aadhar_model = aadhar_model.to(device)

# pan model
pan_model = "AuditEdge/doc_ocr_p"  # Replace with your fine-tuned model if applicable
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")



# Load the processor (tokenizer + image processor)
processor_pan = LayoutLMv3Processor.from_pretrained(
    pan_model,
    use_auth_token=HUGGINGFACE_AUTH_TOKEN
)
pan_model = LayoutLMv3ForTokenClassification.from_pretrained(
    pan_model,
    use_auth_token=HUGGINGFACE_AUTH_TOKEN
)
pan_model = pan_model.to(device)

#
# gst model
gst_model = "AuditEdge/doc_ocr_new_g"  # Replace with your fine-tuned model if applicable
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")

# Load the processor (tokenizer + image processor)
processor_gst = LayoutLMv3Processor.from_pretrained(
    gst_model,
    use_auth_token=HUGGINGFACE_AUTH_TOKEN
)
gst_model = LayoutLMv3ForTokenClassification.from_pretrained(
    gst_model,
    use_auth_token=HUGGINGFACE_AUTH_TOKEN
)
gst_model = gst_model.to(device)

#cheque model

cheque_model = "AuditEdge/doc_ocr_new_c"  # Replace with your fine-tuned model if applicable
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")

# Load the processor (tokenizer + image processor)
processor_cheque = LayoutLMv3Processor.from_pretrained(
    cheque_model,
    use_auth_token=HUGGINGFACE_AUTH_TOKEN
)
cheque_model = LayoutLMv3ForTokenClassification.from_pretrained(
    cheque_model,
    use_auth_token=HUGGINGFACE_AUTH_TOKEN
)
cheque_model = cheque_model.to(device)






# Verify model and processor are loaded
print("Model and processor loaded successfully!")
print(f"Model is on device: {next(aadhar_model.parameters()).device}")


# Import inference modules
from layoutlmv3FineTuning.Layoutlm_inference.ocr import prepare_batch_for_inference
from layoutlmv3FineTuning.Layoutlm_inference.inference_handler import handle

# Create FastAPI instance
app = FastAPI(debug=True)

# Enable CORS
app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)

# Configure directories
UPLOAD_FOLDER = './uploads/'
processing_folder = "./processed_images"
os.makedirs(UPLOAD_FOLDER, exist_ok=True)  # Ensure the main upload folder exists
os.makedirs(processing_folder,exist_ok=True)

UPLOAD_DIRS = {
    "aadhar_file": "uploads/aadhar/",
    "pan_file": "uploads/pan/",
    "cheque_file": "uploads/cheque/",
    "gst_file": "uploads/gst/",
}

process_dirs = {
    "aadhar_file": "processed_images/aadhar/",
    "pan_file": "processed_images/pan/",
    "cheque_file": "processed_images/cheque/",
    "gst_file": "processed_images/gst/",

}

# Ensure individual directories exist
for dir_path in UPLOAD_DIRS.values():
    os.makedirs(dir_path, exist_ok=True)
    
for dir_path in process_dirs.values():
    os.makedirs(dir_path, exist_ok=True)
    
    

# Logger configuration
logging.basicConfig(level=logging.INFO)

# Perform Inference
def perform_inference(file_paths: Dict[str, str]):
    # Dictionary to map document types to their respective model directories
    model_dirs = {
        "aadhar_file": aadhar_model,
        "pan_file": pan_model,
        "cheque_file": cheque_model,
        "gst_file": gst_model,
    }
    try: 
        # Dictionary to store results for each document type
        inference_results = {}

        # Loop through the file paths and perform inference
        for doc_type, file_path in file_paths.items():
            if doc_type in model_dirs:
                print(f"Processing {doc_type} using model at {model_dirs[doc_type]}")

                # Prepare batch for inference
                processed_file_p = file_path.split("&&")[0]
                unprocessed_file_path = file_path.split("&&")[1]

                images_path = [processed_file_p]
                inference_batch = prepare_batch_for_inference(images_path)

                # Prepare context for the specific document type
                # context = {"model_dir": model_dirs[doc_type]}
                #initialize s3 client 
                client = s3_client()

                local_file_path= unprocessed_file_path
                bucket_name = "edgekycdocs"
                
                file_name = unprocessed_file_path.split("/")[-1]
                
                


                # context = aadhar_model
                if doc_type == "aadhar_file":
                    context = aadhar_model
                    processor = processor_aadhar
                    name = "aadhar"
                    attachemnt_num = 3
                    folder_name = "aadhardocs"

                    
                if doc_type == "pan_file":
                    context = pan_model
                    processor = processor_pan
                    name = "pan"
                    attachemnt_num = 2
                    folder_name = "pandocs"
                    
                if doc_type == "gst_file":
                    context = gst_model
                    processor = processor_gst
                    name = "gst"
                    attachemnt_num = 4
                    folder_name = "gstdocs"
                    
                if doc_type == "cheque_file":
                    context = cheque_model
                    processor = processor_cheque
                    name = "cheque"
                    attachemnt_num = 8
                    folder_name = "bankchequedocs"
                

                
                # upload the document to s3 bucket here


                response = client.upload_file(local_file_path,bucket_name,folder_name,file_name)

                print("The file has been uploaded to s3 bucket",response)
                    

                # Perform inference (replace `handle` with your actual function)
                result = handle(inference_batch, context,processor,name)
                # result["attachment_url": response["url"]]
                result["attachment_url"] = response["url"]
                result["detect"] = True

                print("result required",result)

                # if result[""]

                # Store the result
                inference_results["attachment_{}".format(attachemnt_num)] = result
            else:
                print(f"Model directory not found for {doc_type}. Skipping.")
            # print(Javed)

            return inference_results
    except:
        return {
                "status": "error",
                "message": "Text extraction failed."
                }


# Routes
@app.get("/")
def greet_json():
    return {"Hello": "World!"}

@app.post("/api/aadhar_ocr")
async def aadhar_ocr(

    aadhar_file: UploadFile = File(None),

    pan_file: UploadFile = File(None),

    cheque_file: UploadFile = File(None),

    gst_file: UploadFile = File(None),

):
    try:
        # Handle file uploads
        file_paths = {}
        for file_type, folder in UPLOAD_DIRS.items():
            file = locals()[file_type]  # Dynamically access the file arguments
            if file:
                # Save the file in the respective directory
                file_path = os.path.join(folder, file.filename)
                with open(file_path, "wb") as buffer:
                    shutil.copyfileobj(file.file, buffer)
                file_paths[file_type] = file_path

        # Log received files
        logging.info(f"Received files: {list(file_paths.keys())}")
        print("file_paths",file_paths)
        
        files = {}
        for key, value in file_paths.items():
            name = value.split("/")[-1].split(".")[0]
            id_type = key.split("_")[0]
            doc_type = value.split("/")[-1].split(".")[1]
            f_path = value
            preprocessing = doc_processing(name,id_type,doc_type,f_path)
            response = preprocessing.process()
            files[key] = response["output_p"] + "&&" + f_path
            # files["unprocessed_file_path"] = f_path
            print("response",response)

        
        # Perform inference
        result = perform_inference(files)

        print("this is the result we got",result)
        if "status" in list(result.keys()):
            raise Exception("Custom error message")
        # if result["status"] == "error":
            


        return {"status": "success", "result": result}


    except Exception as e:
        logging.error(f"Error processing files: {e}")
        # raise HTTPException(status_code=500, detail="Internal Server Error")
        return {
                "status": 400,
                "message": "Text extraction failed."
                }