File size: 21,828 Bytes
3177dbb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81e13bb
 
 
 
 
3177dbb
81e13bb
3bb9361
3177dbb
 
81e13bb
 
3177dbb
f8afc9b
 
81e13bb
 
 
 
 
 
 
 
 
 
 
 
 
 
3177dbb
81e13bb
 
3177dbb
81e13bb
f8afc9b
 
81e13bb
 
 
 
 
 
 
f8afc9b
81e13bb
 
3177dbb
81e13bb
 
3177dbb
81e13bb
 
 
 
 
3177dbb
 
 
81e13bb
 
 
 
 
3177dbb
81e13bb
 
3177dbb
81e13bb
 
 
3177dbb
81e13bb
3177dbb
 
 
81e13bb
 
 
 
 
3177dbb
81e13bb
 
3177dbb
81e13bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3177dbb
f8afc9b
81e13bb
3177dbb
 
81e13bb
 
 
3177dbb
81e13bb
3177dbb
 
 
81e13bb
 
3177dbb
f8afc9b
 
 
 
 
 
 
81e13bb
 
 
3177dbb
f8afc9b
 
3177dbb
81e13bb
 
 
 
3177dbb
 
 
81e13bb
 
 
3177dbb
81e13bb
3177dbb
3bb9361
81e13bb
3bb9361
 
 
 
 
 
 
 
 
3177dbb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3bb9361
 
3177dbb
3bb9361
 
 
3177dbb
3bb9361
3177dbb
81e13bb
 
 
 
 
 
 
3177dbb
81e13bb
 
 
 
 
 
3177dbb
 
 
81e13bb
e709d2a
3177dbb
e709d2a
 
 
 
 
 
 
3177dbb
e709d2a
 
 
 
 
 
3177dbb
 
e709d2a
 
 
 
 
 
f8afc9b
3177dbb
 
e709d2a
 
3177dbb
e709d2a
 
 
3177dbb
81e13bb
e709d2a
3177dbb
3bb9361
3177dbb
e709d2a
 
 
81e13bb
e709d2a
3bb9361
e709d2a
3177dbb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
# from fastapi import FastAPI, File, UploadFile, HTTPException
# from fastapi.middleware.cors import CORSMiddleware
# from typing import Dict
# import os
# import shutil
# import logging
# from s3_setup import s3_client
 
# import torch
# from transformers import LayoutLMv3Processor, LayoutLMv3ForTokenClassification

# from dotenv import load_dotenv
# import os

# from utils import doc_processing

# # Load .env file
# load_dotenv()

# # Access variables
# dummy_key = os.getenv("dummy_key")
# HUGGINGFACE_AUTH_TOKEN = dummy_key


# # Hugging Face model and token
# aadhar_model = "AuditEdge/doc_ocr_a"  # Replace with your fine-tuned model if applicable
# device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# print(f"Using device: {device}")

# # Load the processor (tokenizer + image processor)
# processor_aadhar = LayoutLMv3Processor.from_pretrained(
#     aadhar_model,
#     use_auth_token=HUGGINGFACE_AUTH_TOKEN
# )
# aadhar_model = LayoutLMv3ForTokenClassification.from_pretrained(
#     aadhar_model,
#     use_auth_token=HUGGINGFACE_AUTH_TOKEN
# )


# aadhar_model = aadhar_model.to(device)

# # pan model
# pan_model = "AuditEdge/doc_ocr_p"  # Replace with your fine-tuned model if applicable
# device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# print(f"Using device: {device}")



# # Load the processor (tokenizer + image processor)
# processor_pan = LayoutLMv3Processor.from_pretrained(
#     pan_model,
#     use_auth_token=HUGGINGFACE_AUTH_TOKEN
# )
# pan_model = LayoutLMv3ForTokenClassification.from_pretrained(
#     pan_model,
#     use_auth_token=HUGGINGFACE_AUTH_TOKEN
# )
# pan_model = pan_model.to(device)

# #
# # gst model
# gst_model = "AuditEdge/doc_ocr_new_g"  # Replace with your fine-tuned model if applicable
# device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# print(f"Using device: {device}")

# # Load the processor (tokenizer + image processor)
# processor_gst = LayoutLMv3Processor.from_pretrained(
#     gst_model,
#     use_auth_token=HUGGINGFACE_AUTH_TOKEN
# )
# gst_model = LayoutLMv3ForTokenClassification.from_pretrained(
#     gst_model,
#     use_auth_token=HUGGINGFACE_AUTH_TOKEN
# )
# gst_model = gst_model.to(device)

# #cheque model

# cheque_model = "AuditEdge/doc_ocr_new_c"  # Replace with your fine-tuned model if applicable
# device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# print(f"Using device: {device}")

# # Load the processor (tokenizer + image processor)
# processor_cheque = LayoutLMv3Processor.from_pretrained(
#     cheque_model,
#     use_auth_token=HUGGINGFACE_AUTH_TOKEN
# )
# cheque_model = LayoutLMv3ForTokenClassification.from_pretrained(
#     cheque_model,
#     use_auth_token=HUGGINGFACE_AUTH_TOKEN
# )
# cheque_model = cheque_model.to(device)






# # Verify model and processor are loaded
# print("Model and processor loaded successfully!")
# print(f"Model is on device: {next(aadhar_model.parameters()).device}")


# # Import inference modules
# from layoutlmv3FineTuning.Layoutlm_inference.ocr import prepare_batch_for_inference
# from layoutlmv3FineTuning.Layoutlm_inference.inference_handler import handle

# # Create FastAPI instance
# app = FastAPI(debug=True)

# # Enable CORS
# app.add_middleware(
#     CORSMiddleware,
#     allow_origins=["*"],
#     allow_credentials=True,
#     allow_methods=["*"],
#     allow_headers=["*"],
# )

# # Configure directories
# UPLOAD_FOLDER = './uploads/'
# processing_folder = "./processed_images"
# os.makedirs(UPLOAD_FOLDER, exist_ok=True)  # Ensure the main upload folder exists
# os.makedirs(processing_folder,exist_ok=True)

# UPLOAD_DIRS = {
#     "aadhar_file": "uploads/aadhar/",
#     "pan_file": "uploads/pan/",
#     "cheque_file": "uploads/cheque/",
#     "gst_file": "uploads/gst/",
# }

# process_dirs = {
#     "aadhar_file": "processed_images/aadhar/",
#     "pan_file": "processed_images/pan/",
#     "cheque_file": "processed_images/cheque/",
#     "gst_file": "processed_images/gst/",

# }

# # Ensure individual directories exist
# for dir_path in UPLOAD_DIRS.values():
#     os.makedirs(dir_path, exist_ok=True)
    
# for dir_path in process_dirs.values():
#     os.makedirs(dir_path, exist_ok=True)
    
    

# # Logger configuration
# logging.basicConfig(level=logging.INFO)

# # Perform Inference
# def perform_inference(file_paths: Dict[str, str]):
#     # Dictionary to map document types to their respective model directories
#     model_dirs = {
#         "aadhar_file": aadhar_model,
#         "pan_file": pan_model,
#         "cheque_file": cheque_model,
#         "gst_file": gst_model,
#     }
#     try: 
#         # Dictionary to store results for each document type
#         inference_results = {}

#         # Loop through the file paths and perform inference
#         for doc_type, file_path in file_paths.items():
#             if doc_type in model_dirs:
#                 print(f"Processing {doc_type} using model at {model_dirs[doc_type]}")

#                 # Prepare batch for inference
#                 processed_file_p = file_path.split("&&")[0]
#                 unprocessed_file_path = file_path.split("&&")[1]

#                 images_path = [processed_file_p]
#                 inference_batch = prepare_batch_for_inference(images_path)

#                 # Prepare context for the specific document type
#                 # context = {"model_dir": model_dirs[doc_type]}
#                 #initialize s3 client 
#                 client = s3_client()

#                 local_file_path= unprocessed_file_path
#                 bucket_name = "edgekycdocs"
                
#                 file_name = unprocessed_file_path.split("/")[-1]
                
                


#                 # context = aadhar_model
#                 if doc_type == "aadhar_file":
#                     context = aadhar_model
#                     processor = processor_aadhar
#                     name = "aadhar"
#                     attachemnt_num = 3
#                     folder_name = "aadhardocs"

                    
#                 if doc_type == "pan_file":
#                     context = pan_model
#                     processor = processor_pan
#                     name = "pan"
#                     attachemnt_num = 2
#                     folder_name = "pandocs"
                    
#                 if doc_type == "gst_file":
#                     context = gst_model
#                     processor = processor_gst
#                     name = "gst"
#                     attachemnt_num = 4
#                     folder_name = "gstdocs"
                    
#                 if doc_type == "cheque_file":
#                     context = cheque_model
#                     processor = processor_cheque
#                     name = "cheque"
#                     attachemnt_num = 8
#                     folder_name = "bankchequedocs"
                

                
#                 # upload the document to s3 bucket here


#                 print("this is folder name",folder_name)

#                 response = client.upload_file(local_file_path,bucket_name,folder_name,file_name)

#                 print("The file has been uploaded to s3 bucket",response)
                    

#                 # Perform inference (replace `handle` with your actual function)
#                 result = handle(inference_batch, context,processor,name)
#                 # result["attachment_url": response["url"]]
#                 result["attachment_url"] = response["url"]
#                 result["detect"] = True

#                 print("result required",result)

#                 # if result[""]

#                 # Store the result
#                 inference_results["attachment_{}".format(attachemnt_num)] = result
#             else:
#                 print(f"Model directory not found for {doc_type}. Skipping.")
#             # print(Javed)

#             return inference_results
#     except:
#         return {
#                 "status": "error",
#                 "message": "Text extraction failed."
#                 }


# # Routes
# @app.get("/")
# def greet_json():
#     return {"Hello": "World!"}

# @app.post("/api/aadhar_ocr")
# async def aadhar_ocr(
#     aadhar_file: UploadFile = File(None),
#     pan_file: UploadFile = File(None),
#     cheque_file: UploadFile = File(None),
#     gst_file: UploadFile = File(None),
# ):
#     # try:
#         # Handle file uploads
#     file_paths = {}
#     for file_type, folder in UPLOAD_DIRS.items():
#         file = locals()[file_type]  # Dynamically access the file arguments
#         if file:
#             # Save the file in the respective directory
#             file_path = os.path.join(folder, file.filename)

#             print("this is the filename",file.filename)
#             with open(file_path, "wb") as buffer:
#                 shutil.copyfileobj(file.file, buffer)
#             file_paths[file_type] = file_path

#     # Log received files
#     logging.info(f"Received files: {list(file_paths.keys())}")
#     print("file_paths",file_paths)
    
#     files = {}
#     for key, value in file_paths.items():
#         name = value.split("/")[-1].split(".")[0]
#         id_type = key.split("_")[0]
#         doc_type = value.split("/")[-1].split(".")[-1]
#         f_path = value

#         print("variables required",name,id_type,doc_type,f_path)
#         preprocessing = doc_processing(name,id_type,doc_type,f_path)
#         response = preprocessing.process()

#         print("response after preprocessing",response)

#         files[key] = response["output_p"] + "&&" + f_path
#         # files["unprocessed_file_path"] = f_path
#         print("response",response)

    
#     # Perform inference
#     result = perform_inference(files)

#     print("this is the result we got",result)
#     if "status" in list(result.keys()):
#         raise Exception("Custom error message")
#     # if result["status"] == "error":
        


#     return {"status": "success", "result": result}


#     # except Exception as e:
#     #     logging.error(f"Error processing files: {e}")
#     #     # raise HTTPException(status_code=500, detail="Internal Server Error")
#     #     return {
#     #             "status": 400,
#     #             "message": "Text extraction failed."
#     #             }
    
    





from fastapi import FastAPI, File, UploadFile, HTTPException
from fastapi.middleware.cors import CORSMiddleware
from typing import Dict
import os
import shutil
import torch
import logging
from s3_setup import s3_client
import requests
from fastapi import FastAPI, HTTPException, Request
from transformers import LayoutLMv3Processor, LayoutLMv3ForTokenClassification
from dotenv import load_dotenv
import urllib.parse
from utils import doc_processing

# Load .env file
load_dotenv()

# Access variables
dummy_key = os.getenv("dummy_key")
HUGGINGFACE_AUTH_TOKEN = dummy_key

# Hugging Face model and token
aadhar_model = "AuditEdge/doc_ocr_a"  # Replace with your fine-tuned model if applicable
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")

# Load the processor (tokenizer + image processor)
processor_aadhar = LayoutLMv3Processor.from_pretrained(
    aadhar_model, use_auth_token=HUGGINGFACE_AUTH_TOKEN
)
aadhar_model = LayoutLMv3ForTokenClassification.from_pretrained(
    aadhar_model, use_auth_token=HUGGINGFACE_AUTH_TOKEN
)


aadhar_model = aadhar_model.to(device)

# pan model
pan_model = "AuditEdge/doc_ocr_p"  # Replace with your fine-tuned model if applicable
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")


# Load the processor (tokenizer + image processor)
processor_pan = LayoutLMv3Processor.from_pretrained(
    pan_model, use_auth_token=HUGGINGFACE_AUTH_TOKEN
)
pan_model = LayoutLMv3ForTokenClassification.from_pretrained(
    pan_model, use_auth_token=HUGGINGFACE_AUTH_TOKEN
)
pan_model = pan_model.to(device)

#
# gst model
gst_model = (
    "AuditEdge/doc_ocr_new_g"  # Replace with your fine-tuned model if applicable
)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")

# Load the processor (tokenizer + image processor)
processor_gst = LayoutLMv3Processor.from_pretrained(
    gst_model, use_auth_token=HUGGINGFACE_AUTH_TOKEN
)
gst_model = LayoutLMv3ForTokenClassification.from_pretrained(
    gst_model, use_auth_token=HUGGINGFACE_AUTH_TOKEN
)
gst_model = gst_model.to(device)

# cheque model

cheque_model = (
    "AuditEdge/doc_ocr_new_c"  # Replace with your fine-tuned model if applicable
)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")

# Load the processor (tokenizer + image processor)
processor_cheque = LayoutLMv3Processor.from_pretrained(
    cheque_model, use_auth_token=HUGGINGFACE_AUTH_TOKEN
)
cheque_model = LayoutLMv3ForTokenClassification.from_pretrained(
    cheque_model, use_auth_token=HUGGINGFACE_AUTH_TOKEN
)
cheque_model = cheque_model.to(device)


# Verify model and processor are loaded
print("Model and processor loaded successfully!")
print(f"Model is on device: {next(aadhar_model.parameters()).device}")


# Import inference modules
from layoutlmv3FineTuning.Layoutlm_inference.ocr import prepare_batch_for_inference
from layoutlmv3FineTuning.Layoutlm_inference.inference_handler import handle

# Create FastAPI instance
app = FastAPI(debug=True)

# Enable CORS
app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)

# Configure directories
UPLOAD_FOLDER = "./uploads/"
processing_folder = "./processed_images"
os.makedirs(UPLOAD_FOLDER, exist_ok=True)  # Ensure the main upload folder exists
os.makedirs(processing_folder, exist_ok=True)


UPLOAD_DIRS = {
    "pan_file": "uploads/pan/",
    "aadhar_file": "uploads/aadhar/",
    "gst_file": "uploads/gst/",
    "msme_file": "uploads/msme/",
    "cin_llpin_file": "uploads/cin_llpin/",
    "cheque_file": "uploads/cheque/",
}


process_dirs = {
    "aadhar_file": "processed_images/aadhar/",
    "pan_file": "processed_images/pan/",
    "cheque_file": "processed_images/cheque/",
    "gst_file": "processed_images/gst/",
}

# Ensure individual directories exist
for dir_path in UPLOAD_DIRS.values():
    os.makedirs(dir_path, exist_ok=True)

for dir_path in process_dirs.values():
    os.makedirs(dir_path, exist_ok=True)


# Logger configuration
logging.basicConfig(level=logging.INFO)


# Perform Inference with optional S3 upload
def perform_inference(file_paths: Dict[str, str], upload_to_s3: bool):
    model_dirs = {
        "pan_file": pan_model,
        "gst_file": gst_model,
        "cheque_file": cheque_model,
    }
    try:
        inference_results = {}

        for doc_type, file_path in file_paths.items():
            if doc_type in model_dirs:
                print(f"Processing {doc_type} using model at {model_dirs[doc_type]}")

                processed_file_p = file_path.split("&&")[0]
                unprocessed_file_path = file_path.split("&&")[1]
                images_path = [processed_file_p]
                inference_batch = prepare_batch_for_inference(images_path)

                context = model_dirs[doc_type]
                processor = globals()[f"processor_{doc_type.split('_')[0]}"]
                name = doc_type.split("_")[0]
                attachemnt_num = {
                    "pan_file": 2,
                    "gst_file": 4,
                    "msme_file": 5,
                    "cin_llpin_file": 6,
                    "cheque_file": 8,
                }[doc_type]

                if upload_to_s3:
                    client = s3_client()
                    bucket_name = "edgekycdocs"
                    folder_name = f"{name}docs"
                    file_name = unprocessed_file_path.split("/")[-1]
                    response = client.upload_file(
                        unprocessed_file_path, bucket_name, folder_name, file_name
                    )
                    print("The file has been uploaded to S3 bucket", response)
                    attachment_url = response["url"]
                else:
                    attachment_url = None

                result = handle(inference_batch, context, processor, name)
                result["attachment_url"] = attachment_url
                result["detect"] = True

                inference_results[f"attachment_{attachemnt_num}"] = result
            else:
                print(f"Model directory not found for {doc_type}. Skipping.")

        return inference_results
    except:
        return {"status": "error", "message": "Text extraction failed."}


# Routes
@app.get("/")
def greet_json():
    return {"Hello": "World!"}


@app.post("/api/aadhar_ocr")
async def aadhar_ocr(

    aadhar_file: UploadFile = File(None),

    pan_file: UploadFile = File(None),

    cheque_file: UploadFile = File(None),

    gst_file: UploadFile = File(None),

    msme_file: UploadFile = File(None),

    cin_llpin_file: UploadFile = File(None),

    upload_to_s3: bool = True,

):
    # try:
    # Handle file uploads
    file_paths = {}
    for file_type, folder in UPLOAD_DIRS.items():
        file = locals()[file_type]  # Dynamically access the file arguments
        if file:
            # Save the file in the respective directory
            file_path = os.path.join(folder, file.filename)

            print("this is the filename", file.filename)
            with open(file_path, "wb") as buffer:
                shutil.copyfileobj(file.file, buffer)
            file_paths[file_type] = file_path

    # Log received files
    logging.info(f"Received files: {list(file_paths.keys())}")
    print("file_paths", file_paths)

    files = {}
    for key, value in file_paths.items():
        name = value.split("/")[-1].split(".")[0]
        id_type = key.split("_")[0]
        doc_type = value.split("/")[-1].split(".")[-1]
        f_path = value

        print("variables required", name, id_type, doc_type, f_path)
        preprocessing = doc_processing(name, id_type, doc_type, f_path)
        response = preprocessing.process()

        print("response after preprocessing", response)

        files[key] = response["output_p"] + "&&" + f_path
        # files["unprocessed_file_path"] = f_path
        print("response", response)

    # Perform inference
    result = perform_inference(files, upload_to_s3)

    print("this is the result we got", result)
    if "status" in list(result.keys()):
        raise Exception("Custom error message")
    # if result["status"] == "error":

    return {"status": "success", "result": result}


@app.post("/api/document_ocr")
async def document_ocr_s3(request: Request):
    try:
        body = await request.json()  # Read JSON body
        logging.info(f"Received request body: {body}")
    except Exception as e:
        logging.error(f"Failed to parse JSON request: {e}")
        raise HTTPException(status_code=400, detail="Invalid JSON payload")

    # Extract file URLs
    url_mapping = {
        "pan_file": body.get("pan_file"),
        "gst_file": body.get("gst_file"),
        "msme_file": body.get("msme_file"),
        "cin_llpin_file": body.get("cin_llpin_file"),
        "cheque_file": body.get("cheque_file"),
    }
    upload_to_s3 = body.get("upload_to_s3", False)
    logging.info(f"URL Mapping: {url_mapping}")
    file_paths = {}
    for file_type, url in url_mapping.items():
        if url:
            # local_filename = url.split("/")[-1]
            local_filename = urllib.parse.unquote(url.split("/")[-1]).replace(" ", "_")
            file_path = os.path.join(UPLOAD_DIRS[file_type], local_filename)

            try:
                logging.info(f"Attempting to download {url} for {file_type}...")
                response = requests.get(url, stream=True)
                response.raise_for_status()

                with open(file_path, "wb") as buffer:
                    shutil.copyfileobj(response.raw, buffer)

                file_paths[file_type] = file_path
                logging.info(f"Successfully downloaded {file_type} to {file_path}")

            except requests.exceptions.RequestException as e:
                logging.error(f"Failed to download {url}: {e}")
                raise HTTPException(
                    status_code=400, detail=f"Failed to download file from {url}"
                )

    logging.info(f"Downloaded files: {list(file_paths.keys())}")

    files = {}
    for key, value in file_paths.items():
        name = value.split("/")[-1].split(".")[0]
        id_type = key.split("_")[0]
        doc_type = value.split("/")[-1].split(".")[-1]
        f_path = value

        preprocessing = doc_processing(name, id_type, doc_type, f_path)
        response = preprocessing.process()

        files[key] = response["output_p"] + "&&" + f_path

    result = perform_inference(files, upload_to_s3)

    if "status" in list(result.keys()):
        raise HTTPException(status_code=500, detail="Custom error message")

    return {"status": "success", "result": result}