File size: 6,198 Bytes
81e13bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
import pandas as pd
import numpy as np
import os
import argparse
from datasets.features import ClassLabel
from transformers import AutoProcessor
from sklearn.model_selection import train_test_split
from datasets import Features, Sequence, ClassLabel, Value, Array2D, Array3D, Dataset
from datasets import Image as Img
from PIL import Image

import warnings
warnings.filterwarnings('ignore')


def read_text_file(file_path):
    with open(file_path, 'r') as f:
        return (f.readlines())


def prepare_examples(examples):
  images = examples[image_column_name]
  words = examples[text_column_name]
  boxes = examples[boxes_column_name]
  word_labels = examples[label_column_name]

  encoding = processor(images, words, boxes=boxes, word_labels=word_labels,
                       truncation=True, padding="max_length")

  return encoding

def get_zip_dir_name():
    try:
        os.chdir('/content/data')
        dir_list = os.listdir()
        any_file_name = dir_list[0]
        zip_dir_name = any_file_name[:any_file_name.find('\\')]
        if all(list(map(lambda x: x.startswith(zip_dir_name), dir_list))):
            return zip_dir_name
        return False
    finally:
        os.chdir('./../')


def filter_out_unannotated(example):
    tags = example['ner_tags']
    return not all([tag == label2id['O'] for tag in tags])



if __name__ == '__main__':

    parser = argparse.ArgumentParser()
    parser.add_argument('--valid_size')
    parser.add_argument('--output_path')
    args = parser.parse_args()
    TEST_SIZE = float(args.valid_size)
    OUTPUT_PATH = args.output_path

    os.makedirs(args.output_path, exist_ok=True)
    files = {}
    zip_dir_name = get_zip_dir_name()
    if zip_dir_name:
        files['train_box'] = read_text_file(os.path.join(
            os.curdir, 'data', f'{zip_dir_name}\\{zip_dir_name}_box.txt'))
        files['train_image'] = read_text_file(os.path.join(
            os.curdir, 'data', f'{zip_dir_name}\\{zip_dir_name}_image.txt'))
        files['train'] = read_text_file(os.path.join(
            os.curdir, 'data', f'{zip_dir_name}\\{zip_dir_name}.txt'))
    else:
        for f in os.listdir():
            if f.endswith('.txt') and f.find('box') != -1:
                files['train_box'] = read_text_file(os.path.join(os.curdir, f))
            elif f.endswith('.txt') and f.find('image') != -1:
                files['train_image'] = read_text_file(
                    os.path.join(os.curdir, f))
            elif f.endswith('.txt') and f.find('labels') == -1:
                files['train'] = read_text_file(os.path.join(os.curdir, f))

    assert(len(files['train']) == len(files['train_box']))
    assert(len(files['train_box']) == len(files['train_image']))
    assert(len(files['train_image']) == len(files['train']))

    images = {}
    for i, row in enumerate(files['train_image']):
        if row != '\n':
            image_name = row.split('\t')[-1]
            images.setdefault(image_name.replace('\n', ''), []).append(i)

    words, bboxes, ner_tags, image_path = [], [], [], []
    for image, rows in images.items():
        words.append([row.split('\t')[0].replace('\n', '')
                     for row in files['train'][rows[0]:rows[-1]+1]])
        ner_tags.append([row.split('\t')[1].replace('\n', '')
                        for row in files['train'][rows[0]:rows[-1]+1]])
        bboxes.append([box.split('\t')[1].replace('\n', '')
                      for box in files['train_box'][rows[0]:rows[-1]+1]])
        if zip_dir_name:
            image_path.append(f"/content/data/{zip_dir_name}\\{image}")
        else:
            image_path.append(f"/content/data/{image}")

    labels = list(set([tag for doc_tag in ner_tags for tag in doc_tag]))
    id2label = {v: k for v, k in enumerate(labels)}
    label2id = {k: v for v, k in enumerate(labels)}

    dataset_dict = {
        'id': range(len(words)),
        'tokens': words,
        'bboxes': [[list(map(int, bbox.split())) for bbox in doc] for doc in bboxes],
        'ner_tags': [[label2id[tag] for tag in ner_tag] for ner_tag in ner_tags],
        'image': [Image.open(path).convert("RGB") for path in image_path]
    }

    #raw features
    features = Features({
        'id': Value(dtype='string', id=None),
        'tokens': Sequence(feature=Value(dtype='string', id=None), length=-1, id=None),
        'bboxes': Sequence(feature=Sequence(feature=Value(dtype='int64', id=None), length=-1, id=None), length=-1, id=None),
        'ner_tags': Sequence(feature=ClassLabel(num_classes=len(labels), names=labels, names_file=None, id=None), length=-1, id=None),
        'image': Img(decode=True, id=None)
    })

    full_data_set = Dataset.from_dict(dataset_dict, features=features)
    dataset = full_data_set.train_test_split(test_size=TEST_SIZE)
    dataset["train"] = dataset["train"].filter(filter_out_unannotated)
    processor = AutoProcessor.from_pretrained(
        "microsoft/layoutlmv3-base", apply_ocr=False)

    features = dataset["train"].features
    column_names = dataset["train"].column_names
    image_column_name = "image"
    text_column_name = "tokens"
    boxes_column_name = "bboxes"
    label_column_name = "ner_tags"

    # we need to define custom features for `set_format` (used later on) to work properly
    features = Features({
        'pixel_values': Array3D(dtype="float32", shape=(3, 224, 224)),
        'input_ids': Sequence(feature=Value(dtype='int64')),
        'attention_mask': Sequence(Value(dtype='int64')),
        'bbox': Array2D(dtype="int64", shape=(512, 4)),
        'labels': Sequence(ClassLabel(names=labels)),
    })

    train_dataset = dataset["train"].map(
        prepare_examples,
        batched=True,
        remove_columns=column_names,
        features=features,
    )
    eval_dataset = dataset["test"].map(
        prepare_examples,
        batched=True,
        remove_columns=column_names,
        features=features,
    )
    train_dataset.set_format("torch")
    if not OUTPUT_PATH.endswith('/'):
        OUTPUT_PATH += '/'
    train_dataset.save_to_disk(f'{OUTPUT_PATH}train_split')
    eval_dataset.save_to_disk(f'{OUTPUT_PATH}eval_split')
    dataset.save_to_disk(f'{OUTPUT_PATH}raw_data')