Mallisetty Siva Mahesh commited on
Commit
caa039b
·
1 Parent(s): e709d2a

added new api

Browse files
Files changed (2) hide show
  1. app.py +140 -141
  2. requirements.txt +2 -0
app.py CHANGED
@@ -3,15 +3,14 @@ from fastapi.middleware.cors import CORSMiddleware
3
  from typing import Dict
4
  import os
5
  import shutil
 
6
  import logging
7
  from s3_setup import s3_client
8
-
9
- import torch
10
  from transformers import LayoutLMv3Processor, LayoutLMv3ForTokenClassification
11
-
12
  from dotenv import load_dotenv
13
- import os
14
-
15
  from utils import doc_processing
16
 
17
  # Load .env file
@@ -21,7 +20,6 @@ load_dotenv()
21
  dummy_key = os.getenv("dummy_key")
22
  HUGGINGFACE_AUTH_TOKEN = dummy_key
23
 
24
-
25
  # Hugging Face model and token
26
  aadhar_model = "AuditEdge/doc_ocr_a" # Replace with your fine-tuned model if applicable
27
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
@@ -29,12 +27,10 @@ print(f"Using device: {device}")
29
 
30
  # Load the processor (tokenizer + image processor)
31
  processor_aadhar = LayoutLMv3Processor.from_pretrained(
32
- aadhar_model,
33
- use_auth_token=HUGGINGFACE_AUTH_TOKEN
34
  )
35
  aadhar_model = LayoutLMv3ForTokenClassification.from_pretrained(
36
- aadhar_model,
37
- use_auth_token=HUGGINGFACE_AUTH_TOKEN
38
  )
39
 
40
 
@@ -46,57 +42,50 @@ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
46
  print(f"Using device: {device}")
47
 
48
 
49
-
50
  # Load the processor (tokenizer + image processor)
51
  processor_pan = LayoutLMv3Processor.from_pretrained(
52
- pan_model,
53
- use_auth_token=HUGGINGFACE_AUTH_TOKEN
54
  )
55
  pan_model = LayoutLMv3ForTokenClassification.from_pretrained(
56
- pan_model,
57
- use_auth_token=HUGGINGFACE_AUTH_TOKEN
58
  )
59
  pan_model = pan_model.to(device)
60
 
61
  #
62
  # gst model
63
- gst_model = "AuditEdge/doc_ocr_new_g" # Replace with your fine-tuned model if applicable
 
 
64
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
65
  print(f"Using device: {device}")
66
 
67
  # Load the processor (tokenizer + image processor)
68
  processor_gst = LayoutLMv3Processor.from_pretrained(
69
- gst_model,
70
- use_auth_token=HUGGINGFACE_AUTH_TOKEN
71
  )
72
  gst_model = LayoutLMv3ForTokenClassification.from_pretrained(
73
- gst_model,
74
- use_auth_token=HUGGINGFACE_AUTH_TOKEN
75
  )
76
  gst_model = gst_model.to(device)
77
 
78
- #cheque model
79
 
80
- cheque_model = "AuditEdge/doc_ocr_new_c" # Replace with your fine-tuned model if applicable
 
 
81
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
82
  print(f"Using device: {device}")
83
 
84
  # Load the processor (tokenizer + image processor)
85
  processor_cheque = LayoutLMv3Processor.from_pretrained(
86
- cheque_model,
87
- use_auth_token=HUGGINGFACE_AUTH_TOKEN
88
  )
89
  cheque_model = LayoutLMv3ForTokenClassification.from_pretrained(
90
- cheque_model,
91
- use_auth_token=HUGGINGFACE_AUTH_TOKEN
92
  )
93
  cheque_model = cheque_model.to(device)
94
 
95
 
96
-
97
-
98
-
99
-
100
  # Verify model and processor are loaded
101
  print("Model and processor loaded successfully!")
102
  print(f"Model is on device: {next(aadhar_model.parameters()).device}")
@@ -119,140 +108,95 @@ app.add_middleware(
119
  )
120
 
121
  # Configure directories
122
- UPLOAD_FOLDER = './uploads/'
123
  processing_folder = "./processed_images"
124
  os.makedirs(UPLOAD_FOLDER, exist_ok=True) # Ensure the main upload folder exists
125
- os.makedirs(processing_folder,exist_ok=True)
 
126
 
127
  UPLOAD_DIRS = {
128
- "aadhar_file": "uploads/aadhar/",
129
  "pan_file": "uploads/pan/",
130
- "cheque_file": "uploads/cheque/",
131
  "gst_file": "uploads/gst/",
 
 
 
132
  }
133
 
 
134
  process_dirs = {
135
  "aadhar_file": "processed_images/aadhar/",
136
  "pan_file": "processed_images/pan/",
137
  "cheque_file": "processed_images/cheque/",
138
  "gst_file": "processed_images/gst/",
139
-
140
  }
141
 
142
  # Ensure individual directories exist
143
  for dir_path in UPLOAD_DIRS.values():
144
  os.makedirs(dir_path, exist_ok=True)
145
-
146
  for dir_path in process_dirs.values():
147
  os.makedirs(dir_path, exist_ok=True)
148
-
149
-
150
 
151
  # Logger configuration
152
  logging.basicConfig(level=logging.INFO)
153
 
154
- # Perform Inference
155
- def perform_inference(file_paths: Dict[str, str]):
156
- # Dictionary to map document types to their respective model directories
157
  model_dirs = {
158
- "aadhar_file": aadhar_model,
159
  "pan_file": pan_model,
160
- "cheque_file": cheque_model,
161
  "gst_file": gst_model,
 
162
  }
163
- try:
164
- # Dictionary to store results for each document type
165
  inference_results = {}
166
 
167
- # Loop through the file paths and perform inference
168
  for doc_type, file_path in file_paths.items():
169
  if doc_type in model_dirs:
170
  print(f"Processing {doc_type} using model at {model_dirs[doc_type]}")
171
 
172
- # Prepare batch for inference
173
  processed_file_p = file_path.split("&&")[0]
174
  unprocessed_file_path = file_path.split("&&")[1]
175
-
176
  images_path = [processed_file_p]
177
  inference_batch = prepare_batch_for_inference(images_path)
178
 
179
- # Prepare context for the specific document type
180
- # context = {"model_dir": model_dirs[doc_type]}
181
- #initialize s3 client
182
- client = s3_client()
183
-
184
- local_file_path= unprocessed_file_path
185
- bucket_name = "edgekycdocs"
186
-
187
- file_name = unprocessed_file_path.split("/")[-1]
188
-
189
-
190
-
191
-
192
- # context = aadhar_model
193
- if doc_type == "aadhar_file":
194
- context = aadhar_model
195
- processor = processor_aadhar
196
- name = "aadhar"
197
- attachemnt_num = 3
198
- folder_name = "aadhardocs"
199
-
200
-
201
- if doc_type == "pan_file":
202
- context = pan_model
203
- processor = processor_pan
204
- name = "pan"
205
- attachemnt_num = 2
206
- folder_name = "pandocs"
207
-
208
- if doc_type == "gst_file":
209
- context = gst_model
210
- processor = processor_gst
211
- name = "gst"
212
- attachemnt_num = 4
213
- folder_name = "gstdocs"
214
-
215
- if doc_type == "cheque_file":
216
- context = cheque_model
217
- processor = processor_cheque
218
- name = "cheque"
219
- attachemnt_num = 8
220
- folder_name = "bankchequedocs"
221
-
222
-
223
-
224
- # upload the document to s3 bucket here
225
-
226
-
227
- print("this is folder name",folder_name)
228
-
229
- response = client.upload_file(local_file_path,bucket_name,folder_name,file_name)
230
-
231
- print("The file has been uploaded to s3 bucket",response)
232
-
233
-
234
- # Perform inference (replace `handle` with your actual function)
235
- result = handle(inference_batch, context,processor,name)
236
- # result["attachment_url": response["url"]]
237
- result["attachment_url"] = response["url"]
238
  result["detect"] = True
239
 
240
- print("result required",result)
241
-
242
- # if result[""]
243
-
244
- # Store the result
245
- inference_results["attachment_{}".format(attachemnt_num)] = result
246
  else:
247
  print(f"Model directory not found for {doc_type}. Skipping.")
248
- # print(Javed)
249
 
250
- return inference_results
251
  except:
252
- return {
253
- "status": "error",
254
- "message": "Text extraction failed."
255
- }
256
 
257
 
258
  # Routes
@@ -260,15 +204,19 @@ def perform_inference(file_paths: Dict[str, str]):
260
  def greet_json():
261
  return {"Hello": "World!"}
262
 
 
263
  @app.post("/api/aadhar_ocr")
264
  async def aadhar_ocr(
265
  aadhar_file: UploadFile = File(None),
266
  pan_file: UploadFile = File(None),
267
  cheque_file: UploadFile = File(None),
268
  gst_file: UploadFile = File(None),
 
 
 
269
  ):
270
  # try:
271
- # Handle file uploads
272
  file_paths = {}
273
  for file_type, folder in UPLOAD_DIRS.items():
274
  file = locals()[file_type] # Dynamically access the file arguments
@@ -276,15 +224,15 @@ async def aadhar_ocr(
276
  # Save the file in the respective directory
277
  file_path = os.path.join(folder, file.filename)
278
 
279
- print("this is the filename",file.filename)
280
  with open(file_path, "wb") as buffer:
281
  shutil.copyfileobj(file.file, buffer)
282
  file_paths[file_type] = file_path
283
 
284
  # Log received files
285
  logging.info(f"Received files: {list(file_paths.keys())}")
286
- print("file_paths",file_paths)
287
-
288
  files = {}
289
  for key, value in file_paths.items():
290
  name = value.split("/")[-1].split(".")[0]
@@ -292,36 +240,87 @@ async def aadhar_ocr(
292
  doc_type = value.split("/")[-1].split(".")[-1]
293
  f_path = value
294
 
295
- print("variables required",name,id_type,doc_type,f_path)
296
- preprocessing = doc_processing(name,id_type,doc_type,f_path)
297
  response = preprocessing.process()
298
 
299
- print("response after preprocessing",response)
300
 
301
  files[key] = response["output_p"] + "&&" + f_path
302
  # files["unprocessed_file_path"] = f_path
303
- print("response",response)
304
 
305
-
306
  # Perform inference
307
- result = perform_inference(files)
308
 
309
- print("this is the result we got",result)
310
  if "status" in list(result.keys()):
311
  raise Exception("Custom error message")
312
  # if result["status"] == "error":
313
-
314
-
315
 
316
  return {"status": "success", "result": result}
317
 
318
 
319
- # except Exception as e:
320
- # logging.error(f"Error processing files: {e}")
321
- # # raise HTTPException(status_code=500, detail="Internal Server Error")
322
- # return {
323
- # "status": 400,
324
- # "message": "Text extraction failed."
325
- # }
326
-
327
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  from typing import Dict
4
  import os
5
  import shutil
6
+ import torch
7
  import logging
8
  from s3_setup import s3_client
9
+ import requests
10
+ from fastapi import FastAPI, HTTPException, Request
11
  from transformers import LayoutLMv3Processor, LayoutLMv3ForTokenClassification
 
12
  from dotenv import load_dotenv
13
+ import urllib.parse
 
14
  from utils import doc_processing
15
 
16
  # Load .env file
 
20
  dummy_key = os.getenv("dummy_key")
21
  HUGGINGFACE_AUTH_TOKEN = dummy_key
22
 
 
23
  # Hugging Face model and token
24
  aadhar_model = "AuditEdge/doc_ocr_a" # Replace with your fine-tuned model if applicable
25
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
 
27
 
28
  # Load the processor (tokenizer + image processor)
29
  processor_aadhar = LayoutLMv3Processor.from_pretrained(
30
+ aadhar_model, use_auth_token=HUGGINGFACE_AUTH_TOKEN
 
31
  )
32
  aadhar_model = LayoutLMv3ForTokenClassification.from_pretrained(
33
+ aadhar_model, use_auth_token=HUGGINGFACE_AUTH_TOKEN
 
34
  )
35
 
36
 
 
42
  print(f"Using device: {device}")
43
 
44
 
 
45
  # Load the processor (tokenizer + image processor)
46
  processor_pan = LayoutLMv3Processor.from_pretrained(
47
+ pan_model, use_auth_token=HUGGINGFACE_AUTH_TOKEN
 
48
  )
49
  pan_model = LayoutLMv3ForTokenClassification.from_pretrained(
50
+ pan_model, use_auth_token=HUGGINGFACE_AUTH_TOKEN
 
51
  )
52
  pan_model = pan_model.to(device)
53
 
54
  #
55
  # gst model
56
+ gst_model = (
57
+ "AuditEdge/doc_ocr_new_g" # Replace with your fine-tuned model if applicable
58
+ )
59
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
60
  print(f"Using device: {device}")
61
 
62
  # Load the processor (tokenizer + image processor)
63
  processor_gst = LayoutLMv3Processor.from_pretrained(
64
+ gst_model, use_auth_token=HUGGINGFACE_AUTH_TOKEN
 
65
  )
66
  gst_model = LayoutLMv3ForTokenClassification.from_pretrained(
67
+ gst_model, use_auth_token=HUGGINGFACE_AUTH_TOKEN
 
68
  )
69
  gst_model = gst_model.to(device)
70
 
71
+ # cheque model
72
 
73
+ cheque_model = (
74
+ "AuditEdge/doc_ocr_new_c" # Replace with your fine-tuned model if applicable
75
+ )
76
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
77
  print(f"Using device: {device}")
78
 
79
  # Load the processor (tokenizer + image processor)
80
  processor_cheque = LayoutLMv3Processor.from_pretrained(
81
+ cheque_model, use_auth_token=HUGGINGFACE_AUTH_TOKEN
 
82
  )
83
  cheque_model = LayoutLMv3ForTokenClassification.from_pretrained(
84
+ cheque_model, use_auth_token=HUGGINGFACE_AUTH_TOKEN
 
85
  )
86
  cheque_model = cheque_model.to(device)
87
 
88
 
 
 
 
 
89
  # Verify model and processor are loaded
90
  print("Model and processor loaded successfully!")
91
  print(f"Model is on device: {next(aadhar_model.parameters()).device}")
 
108
  )
109
 
110
  # Configure directories
111
+ UPLOAD_FOLDER = "./uploads/"
112
  processing_folder = "./processed_images"
113
  os.makedirs(UPLOAD_FOLDER, exist_ok=True) # Ensure the main upload folder exists
114
+ os.makedirs(processing_folder, exist_ok=True)
115
+
116
 
117
  UPLOAD_DIRS = {
 
118
  "pan_file": "uploads/pan/",
119
+ "aadhar_file": "uploads/aadhar/",
120
  "gst_file": "uploads/gst/",
121
+ "msme_file": "uploads/msme/",
122
+ "cin_llpin_file": "uploads/cin_llpin/",
123
+ "cheque_file": "uploads/cheque/",
124
  }
125
 
126
+
127
  process_dirs = {
128
  "aadhar_file": "processed_images/aadhar/",
129
  "pan_file": "processed_images/pan/",
130
  "cheque_file": "processed_images/cheque/",
131
  "gst_file": "processed_images/gst/",
 
132
  }
133
 
134
  # Ensure individual directories exist
135
  for dir_path in UPLOAD_DIRS.values():
136
  os.makedirs(dir_path, exist_ok=True)
137
+
138
  for dir_path in process_dirs.values():
139
  os.makedirs(dir_path, exist_ok=True)
140
+
 
141
 
142
  # Logger configuration
143
  logging.basicConfig(level=logging.INFO)
144
 
145
+
146
+ # Perform Inference with optional S3 upload
147
+ def perform_inference(file_paths: Dict[str, str], upload_to_s3: bool):
148
  model_dirs = {
 
149
  "pan_file": pan_model,
 
150
  "gst_file": gst_model,
151
+ "cheque_file": cheque_model,
152
  }
153
+ try:
 
154
  inference_results = {}
155
 
 
156
  for doc_type, file_path in file_paths.items():
157
  if doc_type in model_dirs:
158
  print(f"Processing {doc_type} using model at {model_dirs[doc_type]}")
159
 
 
160
  processed_file_p = file_path.split("&&")[0]
161
  unprocessed_file_path = file_path.split("&&")[1]
 
162
  images_path = [processed_file_p]
163
  inference_batch = prepare_batch_for_inference(images_path)
164
 
165
+ context = model_dirs[doc_type]
166
+ processor = globals()[f"processor_{doc_type.split('_')[0]}"]
167
+ name = doc_type.split("_")[0]
168
+ attachemnt_num = {
169
+ "pan_file": 2,
170
+ "gst_file": 4,
171
+ "msme_file": 5,
172
+ "cin_llpin_file": 6,
173
+ "cheque_file": 8,
174
+ }[doc_type]
175
+
176
+ if upload_to_s3:
177
+ client = s3_client()
178
+ bucket_name = "edgekycdocs"
179
+ folder_name = f"{name}docs"
180
+ file_name = unprocessed_file_path.split("/")[-1]
181
+ response = client.upload_file(
182
+ unprocessed_file_path, bucket_name, folder_name, file_name
183
+ )
184
+ print("The file has been uploaded to S3 bucket", response)
185
+ attachment_url = response["url"]
186
+ else:
187
+ attachment_url = None
188
+
189
+ result = handle(inference_batch, context, processor, name)
190
+ result["attachment_url"] = attachment_url
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
191
  result["detect"] = True
192
 
193
+ inference_results[f"attachment_{attachemnt_num}"] = result
 
 
 
 
 
194
  else:
195
  print(f"Model directory not found for {doc_type}. Skipping.")
 
196
 
197
+ return inference_results
198
  except:
199
+ return {"status": "error", "message": "Text extraction failed."}
 
 
 
200
 
201
 
202
  # Routes
 
204
  def greet_json():
205
  return {"Hello": "World!"}
206
 
207
+
208
  @app.post("/api/aadhar_ocr")
209
  async def aadhar_ocr(
210
  aadhar_file: UploadFile = File(None),
211
  pan_file: UploadFile = File(None),
212
  cheque_file: UploadFile = File(None),
213
  gst_file: UploadFile = File(None),
214
+ msme_file: UploadFile = File(None),
215
+ cin_llpin_file: UploadFile = File(None),
216
+ upload_to_s3: bool = True,
217
  ):
218
  # try:
219
+ # Handle file uploads
220
  file_paths = {}
221
  for file_type, folder in UPLOAD_DIRS.items():
222
  file = locals()[file_type] # Dynamically access the file arguments
 
224
  # Save the file in the respective directory
225
  file_path = os.path.join(folder, file.filename)
226
 
227
+ print("this is the filename", file.filename)
228
  with open(file_path, "wb") as buffer:
229
  shutil.copyfileobj(file.file, buffer)
230
  file_paths[file_type] = file_path
231
 
232
  # Log received files
233
  logging.info(f"Received files: {list(file_paths.keys())}")
234
+ print("file_paths", file_paths)
235
+
236
  files = {}
237
  for key, value in file_paths.items():
238
  name = value.split("/")[-1].split(".")[0]
 
240
  doc_type = value.split("/")[-1].split(".")[-1]
241
  f_path = value
242
 
243
+ print("variables required", name, id_type, doc_type, f_path)
244
+ preprocessing = doc_processing(name, id_type, doc_type, f_path)
245
  response = preprocessing.process()
246
 
247
+ print("response after preprocessing", response)
248
 
249
  files[key] = response["output_p"] + "&&" + f_path
250
  # files["unprocessed_file_path"] = f_path
251
+ print("response", response)
252
 
 
253
  # Perform inference
254
+ result = perform_inference(files, upload_to_s3)
255
 
256
+ print("this is the result we got", result)
257
  if "status" in list(result.keys()):
258
  raise Exception("Custom error message")
259
  # if result["status"] == "error":
 
 
260
 
261
  return {"status": "success", "result": result}
262
 
263
 
264
+ @app.post("/api/document_ocr")
265
+ async def document_ocr_s3(request: Request):
266
+ try:
267
+ body = await request.json() # Read JSON body
268
+ logging.info(f"Received request body: {body}")
269
+ except Exception as e:
270
+ logging.error(f"Failed to parse JSON request: {e}")
271
+ raise HTTPException(status_code=400, detail="Invalid JSON payload")
272
+
273
+ # Extract file URLs
274
+ url_mapping = {
275
+ "pan_file": body.get("pan_file"),
276
+ "gst_file": body.get("gst_file"),
277
+ "msme_file": body.get("msme_file"),
278
+ "cin_llpin_file": body.get("cin_llpin_file"),
279
+ "cheque_file": body.get("cheque_file"),
280
+ }
281
+ upload_to_s3 = body.get("upload_to_s3", False)
282
+ logging.info(f"URL Mapping: {url_mapping}")
283
+ file_paths = {}
284
+ for file_type, url in url_mapping.items():
285
+ if url:
286
+ # local_filename = url.split("/")[-1]
287
+ local_filename = urllib.parse.unquote(url.split("/")[-1]).replace(" ", "_")
288
+ file_path = os.path.join(UPLOAD_DIRS[file_type], local_filename)
289
+
290
+ try:
291
+ logging.info(f"Attempting to download {url} for {file_type}...")
292
+ response = requests.get(url, stream=True)
293
+ response.raise_for_status()
294
+
295
+ with open(file_path, "wb") as buffer:
296
+ shutil.copyfileobj(response.raw, buffer)
297
+
298
+ file_paths[file_type] = file_path
299
+ logging.info(f"Successfully downloaded {file_type} to {file_path}")
300
+
301
+ except requests.exceptions.RequestException as e:
302
+ logging.error(f"Failed to download {url}: {e}")
303
+ raise HTTPException(
304
+ status_code=400, detail=f"Failed to download file from {url}"
305
+ )
306
+
307
+ logging.info(f"Downloaded files: {list(file_paths.keys())}")
308
+
309
+ files = {}
310
+ for key, value in file_paths.items():
311
+ name = value.split("/")[-1].split(".")[0]
312
+ id_type = key.split("_")[0]
313
+ doc_type = value.split("/")[-1].split(".")[-1]
314
+ f_path = value
315
+
316
+ preprocessing = doc_processing(name, id_type, doc_type, f_path)
317
+ response = preprocessing.process()
318
+
319
+ files[key] = response["output_p"] + "&&" + f_path
320
+
321
+ result = perform_inference(files, upload_to_s3)
322
+
323
+ if "status" in list(result.keys()):
324
+ raise HTTPException(status_code=500, detail="Custom error message")
325
+
326
+ return {"status": "success", "result": result}
requirements.txt CHANGED
@@ -10,3 +10,5 @@ python-dotenv
10
  pymupdf
11
  pillow
12
  boto3
 
 
 
10
  pymupdf
11
  pillow
12
  boto3
13
+
14
+ python-multipart