Spaces:
Running
Running
Mallisetty Siva Mahesh
commited on
Commit
·
caa039b
1
Parent(s):
e709d2a
added new api
Browse files- app.py +140 -141
- requirements.txt +2 -0
app.py
CHANGED
@@ -3,15 +3,14 @@ from fastapi.middleware.cors import CORSMiddleware
|
|
3 |
from typing import Dict
|
4 |
import os
|
5 |
import shutil
|
|
|
6 |
import logging
|
7 |
from s3_setup import s3_client
|
8 |
-
|
9 |
-
import
|
10 |
from transformers import LayoutLMv3Processor, LayoutLMv3ForTokenClassification
|
11 |
-
|
12 |
from dotenv import load_dotenv
|
13 |
-
import
|
14 |
-
|
15 |
from utils import doc_processing
|
16 |
|
17 |
# Load .env file
|
@@ -21,7 +20,6 @@ load_dotenv()
|
|
21 |
dummy_key = os.getenv("dummy_key")
|
22 |
HUGGINGFACE_AUTH_TOKEN = dummy_key
|
23 |
|
24 |
-
|
25 |
# Hugging Face model and token
|
26 |
aadhar_model = "AuditEdge/doc_ocr_a" # Replace with your fine-tuned model if applicable
|
27 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
@@ -29,12 +27,10 @@ print(f"Using device: {device}")
|
|
29 |
|
30 |
# Load the processor (tokenizer + image processor)
|
31 |
processor_aadhar = LayoutLMv3Processor.from_pretrained(
|
32 |
-
aadhar_model,
|
33 |
-
use_auth_token=HUGGINGFACE_AUTH_TOKEN
|
34 |
)
|
35 |
aadhar_model = LayoutLMv3ForTokenClassification.from_pretrained(
|
36 |
-
aadhar_model,
|
37 |
-
use_auth_token=HUGGINGFACE_AUTH_TOKEN
|
38 |
)
|
39 |
|
40 |
|
@@ -46,57 +42,50 @@ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
46 |
print(f"Using device: {device}")
|
47 |
|
48 |
|
49 |
-
|
50 |
# Load the processor (tokenizer + image processor)
|
51 |
processor_pan = LayoutLMv3Processor.from_pretrained(
|
52 |
-
pan_model,
|
53 |
-
use_auth_token=HUGGINGFACE_AUTH_TOKEN
|
54 |
)
|
55 |
pan_model = LayoutLMv3ForTokenClassification.from_pretrained(
|
56 |
-
pan_model,
|
57 |
-
use_auth_token=HUGGINGFACE_AUTH_TOKEN
|
58 |
)
|
59 |
pan_model = pan_model.to(device)
|
60 |
|
61 |
#
|
62 |
# gst model
|
63 |
-
gst_model =
|
|
|
|
|
64 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
65 |
print(f"Using device: {device}")
|
66 |
|
67 |
# Load the processor (tokenizer + image processor)
|
68 |
processor_gst = LayoutLMv3Processor.from_pretrained(
|
69 |
-
gst_model,
|
70 |
-
use_auth_token=HUGGINGFACE_AUTH_TOKEN
|
71 |
)
|
72 |
gst_model = LayoutLMv3ForTokenClassification.from_pretrained(
|
73 |
-
gst_model,
|
74 |
-
use_auth_token=HUGGINGFACE_AUTH_TOKEN
|
75 |
)
|
76 |
gst_model = gst_model.to(device)
|
77 |
|
78 |
-
#cheque model
|
79 |
|
80 |
-
cheque_model =
|
|
|
|
|
81 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
82 |
print(f"Using device: {device}")
|
83 |
|
84 |
# Load the processor (tokenizer + image processor)
|
85 |
processor_cheque = LayoutLMv3Processor.from_pretrained(
|
86 |
-
cheque_model,
|
87 |
-
use_auth_token=HUGGINGFACE_AUTH_TOKEN
|
88 |
)
|
89 |
cheque_model = LayoutLMv3ForTokenClassification.from_pretrained(
|
90 |
-
cheque_model,
|
91 |
-
use_auth_token=HUGGINGFACE_AUTH_TOKEN
|
92 |
)
|
93 |
cheque_model = cheque_model.to(device)
|
94 |
|
95 |
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
# Verify model and processor are loaded
|
101 |
print("Model and processor loaded successfully!")
|
102 |
print(f"Model is on device: {next(aadhar_model.parameters()).device}")
|
@@ -119,140 +108,95 @@ app.add_middleware(
|
|
119 |
)
|
120 |
|
121 |
# Configure directories
|
122 |
-
UPLOAD_FOLDER =
|
123 |
processing_folder = "./processed_images"
|
124 |
os.makedirs(UPLOAD_FOLDER, exist_ok=True) # Ensure the main upload folder exists
|
125 |
-
os.makedirs(processing_folder,exist_ok=True)
|
|
|
126 |
|
127 |
UPLOAD_DIRS = {
|
128 |
-
"aadhar_file": "uploads/aadhar/",
|
129 |
"pan_file": "uploads/pan/",
|
130 |
-
"
|
131 |
"gst_file": "uploads/gst/",
|
|
|
|
|
|
|
132 |
}
|
133 |
|
|
|
134 |
process_dirs = {
|
135 |
"aadhar_file": "processed_images/aadhar/",
|
136 |
"pan_file": "processed_images/pan/",
|
137 |
"cheque_file": "processed_images/cheque/",
|
138 |
"gst_file": "processed_images/gst/",
|
139 |
-
|
140 |
}
|
141 |
|
142 |
# Ensure individual directories exist
|
143 |
for dir_path in UPLOAD_DIRS.values():
|
144 |
os.makedirs(dir_path, exist_ok=True)
|
145 |
-
|
146 |
for dir_path in process_dirs.values():
|
147 |
os.makedirs(dir_path, exist_ok=True)
|
148 |
-
|
149 |
-
|
150 |
|
151 |
# Logger configuration
|
152 |
logging.basicConfig(level=logging.INFO)
|
153 |
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
model_dirs = {
|
158 |
-
"aadhar_file": aadhar_model,
|
159 |
"pan_file": pan_model,
|
160 |
-
"cheque_file": cheque_model,
|
161 |
"gst_file": gst_model,
|
|
|
162 |
}
|
163 |
-
try:
|
164 |
-
# Dictionary to store results for each document type
|
165 |
inference_results = {}
|
166 |
|
167 |
-
# Loop through the file paths and perform inference
|
168 |
for doc_type, file_path in file_paths.items():
|
169 |
if doc_type in model_dirs:
|
170 |
print(f"Processing {doc_type} using model at {model_dirs[doc_type]}")
|
171 |
|
172 |
-
# Prepare batch for inference
|
173 |
processed_file_p = file_path.split("&&")[0]
|
174 |
unprocessed_file_path = file_path.split("&&")[1]
|
175 |
-
|
176 |
images_path = [processed_file_p]
|
177 |
inference_batch = prepare_batch_for_inference(images_path)
|
178 |
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
attachemnt_num = 2
|
206 |
-
folder_name = "pandocs"
|
207 |
-
|
208 |
-
if doc_type == "gst_file":
|
209 |
-
context = gst_model
|
210 |
-
processor = processor_gst
|
211 |
-
name = "gst"
|
212 |
-
attachemnt_num = 4
|
213 |
-
folder_name = "gstdocs"
|
214 |
-
|
215 |
-
if doc_type == "cheque_file":
|
216 |
-
context = cheque_model
|
217 |
-
processor = processor_cheque
|
218 |
-
name = "cheque"
|
219 |
-
attachemnt_num = 8
|
220 |
-
folder_name = "bankchequedocs"
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
# upload the document to s3 bucket here
|
225 |
-
|
226 |
-
|
227 |
-
print("this is folder name",folder_name)
|
228 |
-
|
229 |
-
response = client.upload_file(local_file_path,bucket_name,folder_name,file_name)
|
230 |
-
|
231 |
-
print("The file has been uploaded to s3 bucket",response)
|
232 |
-
|
233 |
-
|
234 |
-
# Perform inference (replace `handle` with your actual function)
|
235 |
-
result = handle(inference_batch, context,processor,name)
|
236 |
-
# result["attachment_url": response["url"]]
|
237 |
-
result["attachment_url"] = response["url"]
|
238 |
result["detect"] = True
|
239 |
|
240 |
-
|
241 |
-
|
242 |
-
# if result[""]
|
243 |
-
|
244 |
-
# Store the result
|
245 |
-
inference_results["attachment_{}".format(attachemnt_num)] = result
|
246 |
else:
|
247 |
print(f"Model directory not found for {doc_type}. Skipping.")
|
248 |
-
# print(Javed)
|
249 |
|
250 |
-
|
251 |
except:
|
252 |
-
return {
|
253 |
-
"status": "error",
|
254 |
-
"message": "Text extraction failed."
|
255 |
-
}
|
256 |
|
257 |
|
258 |
# Routes
|
@@ -260,15 +204,19 @@ def perform_inference(file_paths: Dict[str, str]):
|
|
260 |
def greet_json():
|
261 |
return {"Hello": "World!"}
|
262 |
|
|
|
263 |
@app.post("/api/aadhar_ocr")
|
264 |
async def aadhar_ocr(
|
265 |
aadhar_file: UploadFile = File(None),
|
266 |
pan_file: UploadFile = File(None),
|
267 |
cheque_file: UploadFile = File(None),
|
268 |
gst_file: UploadFile = File(None),
|
|
|
|
|
|
|
269 |
):
|
270 |
# try:
|
271 |
-
|
272 |
file_paths = {}
|
273 |
for file_type, folder in UPLOAD_DIRS.items():
|
274 |
file = locals()[file_type] # Dynamically access the file arguments
|
@@ -276,15 +224,15 @@ async def aadhar_ocr(
|
|
276 |
# Save the file in the respective directory
|
277 |
file_path = os.path.join(folder, file.filename)
|
278 |
|
279 |
-
print("this is the filename",file.filename)
|
280 |
with open(file_path, "wb") as buffer:
|
281 |
shutil.copyfileobj(file.file, buffer)
|
282 |
file_paths[file_type] = file_path
|
283 |
|
284 |
# Log received files
|
285 |
logging.info(f"Received files: {list(file_paths.keys())}")
|
286 |
-
print("file_paths",file_paths)
|
287 |
-
|
288 |
files = {}
|
289 |
for key, value in file_paths.items():
|
290 |
name = value.split("/")[-1].split(".")[0]
|
@@ -292,36 +240,87 @@ async def aadhar_ocr(
|
|
292 |
doc_type = value.split("/")[-1].split(".")[-1]
|
293 |
f_path = value
|
294 |
|
295 |
-
print("variables required",name,id_type,doc_type,f_path)
|
296 |
-
preprocessing = doc_processing(name,id_type,doc_type,f_path)
|
297 |
response = preprocessing.process()
|
298 |
|
299 |
-
print("response after preprocessing",response)
|
300 |
|
301 |
files[key] = response["output_p"] + "&&" + f_path
|
302 |
# files["unprocessed_file_path"] = f_path
|
303 |
-
print("response",response)
|
304 |
|
305 |
-
|
306 |
# Perform inference
|
307 |
-
result = perform_inference(files)
|
308 |
|
309 |
-
print("this is the result we got",result)
|
310 |
if "status" in list(result.keys()):
|
311 |
raise Exception("Custom error message")
|
312 |
# if result["status"] == "error":
|
313 |
-
|
314 |
-
|
315 |
|
316 |
return {"status": "success", "result": result}
|
317 |
|
318 |
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
|
324 |
-
|
325 |
-
|
326 |
-
|
327 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
from typing import Dict
|
4 |
import os
|
5 |
import shutil
|
6 |
+
import torch
|
7 |
import logging
|
8 |
from s3_setup import s3_client
|
9 |
+
import requests
|
10 |
+
from fastapi import FastAPI, HTTPException, Request
|
11 |
from transformers import LayoutLMv3Processor, LayoutLMv3ForTokenClassification
|
|
|
12 |
from dotenv import load_dotenv
|
13 |
+
import urllib.parse
|
|
|
14 |
from utils import doc_processing
|
15 |
|
16 |
# Load .env file
|
|
|
20 |
dummy_key = os.getenv("dummy_key")
|
21 |
HUGGINGFACE_AUTH_TOKEN = dummy_key
|
22 |
|
|
|
23 |
# Hugging Face model and token
|
24 |
aadhar_model = "AuditEdge/doc_ocr_a" # Replace with your fine-tuned model if applicable
|
25 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
27 |
|
28 |
# Load the processor (tokenizer + image processor)
|
29 |
processor_aadhar = LayoutLMv3Processor.from_pretrained(
|
30 |
+
aadhar_model, use_auth_token=HUGGINGFACE_AUTH_TOKEN
|
|
|
31 |
)
|
32 |
aadhar_model = LayoutLMv3ForTokenClassification.from_pretrained(
|
33 |
+
aadhar_model, use_auth_token=HUGGINGFACE_AUTH_TOKEN
|
|
|
34 |
)
|
35 |
|
36 |
|
|
|
42 |
print(f"Using device: {device}")
|
43 |
|
44 |
|
|
|
45 |
# Load the processor (tokenizer + image processor)
|
46 |
processor_pan = LayoutLMv3Processor.from_pretrained(
|
47 |
+
pan_model, use_auth_token=HUGGINGFACE_AUTH_TOKEN
|
|
|
48 |
)
|
49 |
pan_model = LayoutLMv3ForTokenClassification.from_pretrained(
|
50 |
+
pan_model, use_auth_token=HUGGINGFACE_AUTH_TOKEN
|
|
|
51 |
)
|
52 |
pan_model = pan_model.to(device)
|
53 |
|
54 |
#
|
55 |
# gst model
|
56 |
+
gst_model = (
|
57 |
+
"AuditEdge/doc_ocr_new_g" # Replace with your fine-tuned model if applicable
|
58 |
+
)
|
59 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
60 |
print(f"Using device: {device}")
|
61 |
|
62 |
# Load the processor (tokenizer + image processor)
|
63 |
processor_gst = LayoutLMv3Processor.from_pretrained(
|
64 |
+
gst_model, use_auth_token=HUGGINGFACE_AUTH_TOKEN
|
|
|
65 |
)
|
66 |
gst_model = LayoutLMv3ForTokenClassification.from_pretrained(
|
67 |
+
gst_model, use_auth_token=HUGGINGFACE_AUTH_TOKEN
|
|
|
68 |
)
|
69 |
gst_model = gst_model.to(device)
|
70 |
|
71 |
+
# cheque model
|
72 |
|
73 |
+
cheque_model = (
|
74 |
+
"AuditEdge/doc_ocr_new_c" # Replace with your fine-tuned model if applicable
|
75 |
+
)
|
76 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
77 |
print(f"Using device: {device}")
|
78 |
|
79 |
# Load the processor (tokenizer + image processor)
|
80 |
processor_cheque = LayoutLMv3Processor.from_pretrained(
|
81 |
+
cheque_model, use_auth_token=HUGGINGFACE_AUTH_TOKEN
|
|
|
82 |
)
|
83 |
cheque_model = LayoutLMv3ForTokenClassification.from_pretrained(
|
84 |
+
cheque_model, use_auth_token=HUGGINGFACE_AUTH_TOKEN
|
|
|
85 |
)
|
86 |
cheque_model = cheque_model.to(device)
|
87 |
|
88 |
|
|
|
|
|
|
|
|
|
89 |
# Verify model and processor are loaded
|
90 |
print("Model and processor loaded successfully!")
|
91 |
print(f"Model is on device: {next(aadhar_model.parameters()).device}")
|
|
|
108 |
)
|
109 |
|
110 |
# Configure directories
|
111 |
+
UPLOAD_FOLDER = "./uploads/"
|
112 |
processing_folder = "./processed_images"
|
113 |
os.makedirs(UPLOAD_FOLDER, exist_ok=True) # Ensure the main upload folder exists
|
114 |
+
os.makedirs(processing_folder, exist_ok=True)
|
115 |
+
|
116 |
|
117 |
UPLOAD_DIRS = {
|
|
|
118 |
"pan_file": "uploads/pan/",
|
119 |
+
"aadhar_file": "uploads/aadhar/",
|
120 |
"gst_file": "uploads/gst/",
|
121 |
+
"msme_file": "uploads/msme/",
|
122 |
+
"cin_llpin_file": "uploads/cin_llpin/",
|
123 |
+
"cheque_file": "uploads/cheque/",
|
124 |
}
|
125 |
|
126 |
+
|
127 |
process_dirs = {
|
128 |
"aadhar_file": "processed_images/aadhar/",
|
129 |
"pan_file": "processed_images/pan/",
|
130 |
"cheque_file": "processed_images/cheque/",
|
131 |
"gst_file": "processed_images/gst/",
|
|
|
132 |
}
|
133 |
|
134 |
# Ensure individual directories exist
|
135 |
for dir_path in UPLOAD_DIRS.values():
|
136 |
os.makedirs(dir_path, exist_ok=True)
|
137 |
+
|
138 |
for dir_path in process_dirs.values():
|
139 |
os.makedirs(dir_path, exist_ok=True)
|
140 |
+
|
|
|
141 |
|
142 |
# Logger configuration
|
143 |
logging.basicConfig(level=logging.INFO)
|
144 |
|
145 |
+
|
146 |
+
# Perform Inference with optional S3 upload
|
147 |
+
def perform_inference(file_paths: Dict[str, str], upload_to_s3: bool):
|
148 |
model_dirs = {
|
|
|
149 |
"pan_file": pan_model,
|
|
|
150 |
"gst_file": gst_model,
|
151 |
+
"cheque_file": cheque_model,
|
152 |
}
|
153 |
+
try:
|
|
|
154 |
inference_results = {}
|
155 |
|
|
|
156 |
for doc_type, file_path in file_paths.items():
|
157 |
if doc_type in model_dirs:
|
158 |
print(f"Processing {doc_type} using model at {model_dirs[doc_type]}")
|
159 |
|
|
|
160 |
processed_file_p = file_path.split("&&")[0]
|
161 |
unprocessed_file_path = file_path.split("&&")[1]
|
|
|
162 |
images_path = [processed_file_p]
|
163 |
inference_batch = prepare_batch_for_inference(images_path)
|
164 |
|
165 |
+
context = model_dirs[doc_type]
|
166 |
+
processor = globals()[f"processor_{doc_type.split('_')[0]}"]
|
167 |
+
name = doc_type.split("_")[0]
|
168 |
+
attachemnt_num = {
|
169 |
+
"pan_file": 2,
|
170 |
+
"gst_file": 4,
|
171 |
+
"msme_file": 5,
|
172 |
+
"cin_llpin_file": 6,
|
173 |
+
"cheque_file": 8,
|
174 |
+
}[doc_type]
|
175 |
+
|
176 |
+
if upload_to_s3:
|
177 |
+
client = s3_client()
|
178 |
+
bucket_name = "edgekycdocs"
|
179 |
+
folder_name = f"{name}docs"
|
180 |
+
file_name = unprocessed_file_path.split("/")[-1]
|
181 |
+
response = client.upload_file(
|
182 |
+
unprocessed_file_path, bucket_name, folder_name, file_name
|
183 |
+
)
|
184 |
+
print("The file has been uploaded to S3 bucket", response)
|
185 |
+
attachment_url = response["url"]
|
186 |
+
else:
|
187 |
+
attachment_url = None
|
188 |
+
|
189 |
+
result = handle(inference_batch, context, processor, name)
|
190 |
+
result["attachment_url"] = attachment_url
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
191 |
result["detect"] = True
|
192 |
|
193 |
+
inference_results[f"attachment_{attachemnt_num}"] = result
|
|
|
|
|
|
|
|
|
|
|
194 |
else:
|
195 |
print(f"Model directory not found for {doc_type}. Skipping.")
|
|
|
196 |
|
197 |
+
return inference_results
|
198 |
except:
|
199 |
+
return {"status": "error", "message": "Text extraction failed."}
|
|
|
|
|
|
|
200 |
|
201 |
|
202 |
# Routes
|
|
|
204 |
def greet_json():
|
205 |
return {"Hello": "World!"}
|
206 |
|
207 |
+
|
208 |
@app.post("/api/aadhar_ocr")
|
209 |
async def aadhar_ocr(
|
210 |
aadhar_file: UploadFile = File(None),
|
211 |
pan_file: UploadFile = File(None),
|
212 |
cheque_file: UploadFile = File(None),
|
213 |
gst_file: UploadFile = File(None),
|
214 |
+
msme_file: UploadFile = File(None),
|
215 |
+
cin_llpin_file: UploadFile = File(None),
|
216 |
+
upload_to_s3: bool = True,
|
217 |
):
|
218 |
# try:
|
219 |
+
# Handle file uploads
|
220 |
file_paths = {}
|
221 |
for file_type, folder in UPLOAD_DIRS.items():
|
222 |
file = locals()[file_type] # Dynamically access the file arguments
|
|
|
224 |
# Save the file in the respective directory
|
225 |
file_path = os.path.join(folder, file.filename)
|
226 |
|
227 |
+
print("this is the filename", file.filename)
|
228 |
with open(file_path, "wb") as buffer:
|
229 |
shutil.copyfileobj(file.file, buffer)
|
230 |
file_paths[file_type] = file_path
|
231 |
|
232 |
# Log received files
|
233 |
logging.info(f"Received files: {list(file_paths.keys())}")
|
234 |
+
print("file_paths", file_paths)
|
235 |
+
|
236 |
files = {}
|
237 |
for key, value in file_paths.items():
|
238 |
name = value.split("/")[-1].split(".")[0]
|
|
|
240 |
doc_type = value.split("/")[-1].split(".")[-1]
|
241 |
f_path = value
|
242 |
|
243 |
+
print("variables required", name, id_type, doc_type, f_path)
|
244 |
+
preprocessing = doc_processing(name, id_type, doc_type, f_path)
|
245 |
response = preprocessing.process()
|
246 |
|
247 |
+
print("response after preprocessing", response)
|
248 |
|
249 |
files[key] = response["output_p"] + "&&" + f_path
|
250 |
# files["unprocessed_file_path"] = f_path
|
251 |
+
print("response", response)
|
252 |
|
|
|
253 |
# Perform inference
|
254 |
+
result = perform_inference(files, upload_to_s3)
|
255 |
|
256 |
+
print("this is the result we got", result)
|
257 |
if "status" in list(result.keys()):
|
258 |
raise Exception("Custom error message")
|
259 |
# if result["status"] == "error":
|
|
|
|
|
260 |
|
261 |
return {"status": "success", "result": result}
|
262 |
|
263 |
|
264 |
+
@app.post("/api/document_ocr")
|
265 |
+
async def document_ocr_s3(request: Request):
|
266 |
+
try:
|
267 |
+
body = await request.json() # Read JSON body
|
268 |
+
logging.info(f"Received request body: {body}")
|
269 |
+
except Exception as e:
|
270 |
+
logging.error(f"Failed to parse JSON request: {e}")
|
271 |
+
raise HTTPException(status_code=400, detail="Invalid JSON payload")
|
272 |
+
|
273 |
+
# Extract file URLs
|
274 |
+
url_mapping = {
|
275 |
+
"pan_file": body.get("pan_file"),
|
276 |
+
"gst_file": body.get("gst_file"),
|
277 |
+
"msme_file": body.get("msme_file"),
|
278 |
+
"cin_llpin_file": body.get("cin_llpin_file"),
|
279 |
+
"cheque_file": body.get("cheque_file"),
|
280 |
+
}
|
281 |
+
upload_to_s3 = body.get("upload_to_s3", False)
|
282 |
+
logging.info(f"URL Mapping: {url_mapping}")
|
283 |
+
file_paths = {}
|
284 |
+
for file_type, url in url_mapping.items():
|
285 |
+
if url:
|
286 |
+
# local_filename = url.split("/")[-1]
|
287 |
+
local_filename = urllib.parse.unquote(url.split("/")[-1]).replace(" ", "_")
|
288 |
+
file_path = os.path.join(UPLOAD_DIRS[file_type], local_filename)
|
289 |
+
|
290 |
+
try:
|
291 |
+
logging.info(f"Attempting to download {url} for {file_type}...")
|
292 |
+
response = requests.get(url, stream=True)
|
293 |
+
response.raise_for_status()
|
294 |
+
|
295 |
+
with open(file_path, "wb") as buffer:
|
296 |
+
shutil.copyfileobj(response.raw, buffer)
|
297 |
+
|
298 |
+
file_paths[file_type] = file_path
|
299 |
+
logging.info(f"Successfully downloaded {file_type} to {file_path}")
|
300 |
+
|
301 |
+
except requests.exceptions.RequestException as e:
|
302 |
+
logging.error(f"Failed to download {url}: {e}")
|
303 |
+
raise HTTPException(
|
304 |
+
status_code=400, detail=f"Failed to download file from {url}"
|
305 |
+
)
|
306 |
+
|
307 |
+
logging.info(f"Downloaded files: {list(file_paths.keys())}")
|
308 |
+
|
309 |
+
files = {}
|
310 |
+
for key, value in file_paths.items():
|
311 |
+
name = value.split("/")[-1].split(".")[0]
|
312 |
+
id_type = key.split("_")[0]
|
313 |
+
doc_type = value.split("/")[-1].split(".")[-1]
|
314 |
+
f_path = value
|
315 |
+
|
316 |
+
preprocessing = doc_processing(name, id_type, doc_type, f_path)
|
317 |
+
response = preprocessing.process()
|
318 |
+
|
319 |
+
files[key] = response["output_p"] + "&&" + f_path
|
320 |
+
|
321 |
+
result = perform_inference(files, upload_to_s3)
|
322 |
+
|
323 |
+
if "status" in list(result.keys()):
|
324 |
+
raise HTTPException(status_code=500, detail="Custom error message")
|
325 |
+
|
326 |
+
return {"status": "success", "result": result}
|
requirements.txt
CHANGED
@@ -10,3 +10,5 @@ python-dotenv
|
|
10 |
pymupdf
|
11 |
pillow
|
12 |
boto3
|
|
|
|
|
|
10 |
pymupdf
|
11 |
pillow
|
12 |
boto3
|
13 |
+
|
14 |
+
python-multipart
|