from fastapi import FastAPI, File, UploadFile, HTTPException from fastapi.middleware.cors import CORSMiddleware from typing import Dict import shutil import torch import logging import os # Set Google Application Credentials os.environ["GOOGLE_APPLICATION_CREDENTIALS"] = ( "titanium-scope-436311-t3-966373f5aa2f.json" ) from s3_setup import s3_client import requests from fastapi import FastAPI, HTTPException, Request from transformers import LayoutLMv3Processor, LayoutLMv3ForTokenClassification from dotenv import load_dotenv import urllib.parse from utils import doc_processing, extract_document_number_from_file # Load .env file load_dotenv() # Access variables dummy_key = os.getenv("dummy_key") HUGGINGFACE_AUTH_TOKEN = dummy_key # Hugging Face model and token aadhar_model = "AuditEdge/doc_ocr_a" # Replace with your fine-tuned model if applicable device = torch.device("cuda" if torch.cuda.is_available() else "cpu") print(f"Using device: {device}") # Load the processor (tokenizer + image processor) processor_aadhar = LayoutLMv3Processor.from_pretrained( aadhar_model, use_auth_token=HUGGINGFACE_AUTH_TOKEN ) aadhar_model = LayoutLMv3ForTokenClassification.from_pretrained( aadhar_model, use_auth_token=HUGGINGFACE_AUTH_TOKEN ) aadhar_model = aadhar_model.to(device) # pan model pan_model = "AuditEdge/doc_ocr_p" # Replace with your fine-tuned model if applicable device = torch.device("cuda" if torch.cuda.is_available() else "cpu") print(f"Using device: {device}") # Load the processor (tokenizer + image processor) processor_pan = LayoutLMv3Processor.from_pretrained( pan_model, use_auth_token=HUGGINGFACE_AUTH_TOKEN ) pan_model = LayoutLMv3ForTokenClassification.from_pretrained( pan_model, use_auth_token=HUGGINGFACE_AUTH_TOKEN ) pan_model = pan_model.to(device) # # gst model gst_model = ( "AuditEdge/doc_ocr_new_g" # Replace with your fine-tuned model if applicable ) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") print(f"Using device: {device}") # Load the processor (tokenizer + image processor) processor_gst = LayoutLMv3Processor.from_pretrained( gst_model, use_auth_token=HUGGINGFACE_AUTH_TOKEN ) gst_model = LayoutLMv3ForTokenClassification.from_pretrained( gst_model, use_auth_token=HUGGINGFACE_AUTH_TOKEN ) gst_model = gst_model.to(device) # cheque model cheque_model = ( "AuditEdge/doc_ocr_new_c" # Replace with your fine-tuned model if applicable ) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") print(f"Using device: {device}") # Load the processor (tokenizer + image processor) processor_cheque = LayoutLMv3Processor.from_pretrained( cheque_model, use_auth_token=HUGGINGFACE_AUTH_TOKEN ) cheque_model = LayoutLMv3ForTokenClassification.from_pretrained( cheque_model, use_auth_token=HUGGINGFACE_AUTH_TOKEN ) cheque_model = cheque_model.to(device) # Verify model and processor are loaded print("Model and processor loaded successfully!") print(f"Model is on device: {next(aadhar_model.parameters()).device}") # Import inference modules from layoutlmv3FineTuning.Layoutlm_inference.ocr import prepare_batch_for_inference from layoutlmv3FineTuning.Layoutlm_inference.inference_handler import handle # Create FastAPI instance app = FastAPI(debug=True) # Enable CORS app.add_middleware( CORSMiddleware, allow_origins=["*"], allow_credentials=True, allow_methods=["*"], allow_headers=["*"], ) # Configure directories UPLOAD_FOLDER = "./uploads/" processing_folder = "./processed_images" os.makedirs(UPLOAD_FOLDER, exist_ok=True) # Ensure the main upload folder exists os.makedirs(processing_folder, exist_ok=True) UPLOAD_DIRS = { "pan_file": "uploads/pan/", "aadhar_file": "uploads/aadhar/", "gst_file": "uploads/gst/", "msme_file": "uploads/msme/", "cin_llpin_file": "uploads/cin_llpin/", "cheque_file": "uploads/cheque/", } process_dirs = { "aadhar_file": "processed_images/aadhar/", "pan_file": "processed_images/pan/", "cheque_file": "processed_images/cheque/", "gst_file": "processed_images/gst/", "msme_file": "processed_images/msme/", "cin_llpin_file": "processed_images/cin_llpin/", } # Ensure individual directories exist for dir_path in UPLOAD_DIRS.values(): os.makedirs(dir_path, exist_ok=True) for dir_path in process_dirs.values(): os.makedirs(dir_path, exist_ok=True) # Logger configuration logging.basicConfig(level=logging.INFO) def perform_inference(file_paths: Dict[str, str], upload_to_s3: bool): model_dirs = { "pan_file": pan_model, "gst_file": gst_model, "cheque_file": cheque_model, } try: inference_results = {} for doc_type, file_path in file_paths.items(): processed_file_p = file_path.split("&&")[ 0 ] # Extracted document number or processed image unprocessed_file_path = file_path.split("&&")[1] # Original file path print(f"Processing {doc_type}: {processed_file_p}") # Determine the attachment number based on the document type attachment_num = { "pan_file": 2, "gst_file": 4, "msme_file": 5, "cin_llpin_file": 6, "cheque_file": 8, }.get(doc_type, None) if attachment_num is None: print(f"Skipping {doc_type}, not recognized.") continue # Upload file to S3 if required if upload_to_s3: client = s3_client() bucket_name = "edgekycdocs" if doc_type == "cin_llpin": folder_name = f"{doc_type.replace('_', '')}docs" else: folder_name = f"{doc_type.split('_')[0]}docs" file_name = unprocessed_file_path.split("/")[-1].replace(" ", "_") try: response = client.upload_file( unprocessed_file_path, bucket_name, folder_name, file_name ) print("The file has been uploaded to S3 bucket", response) attachment_url = response["url"] print(f"File uploaded to S3: {attachment_url}") except Exception as e: print(f"Failed to upload {file_name} to S3: {e}") attachment_url = None else: attachment_url = None # If it's an OCR-based extraction (CIN, MSME, LLPIN, PAN, Aadhaar), return the extracted number if doc_type in ["msme_file", "cin_llpin_file", "aadhar_file"]: result = { "attachment_num": processed_file_p, # Extracted CIN, LLPIN, MSME, PAN, or Aadhaar number "attachment_url": attachment_url, "attachment_status": 200, "detect": True, } else: # If the document needs ML model inference (PAN, GST, Cheque) if doc_type in model_dirs: print( f"Running ML inference for {doc_type} using {model_dirs[doc_type]}" ) images_path = [processed_file_p] inference_batch = prepare_batch_for_inference(images_path) context = model_dirs[doc_type] processor = globals()[f"processor_{doc_type.split('_')[0]}"] name = doc_type.split("_")[0] result = handle(inference_batch, context, processor, name) result["attachment_url"] = attachment_url result["detect"] = True else: print(f"No model found for {doc_type}, skipping inference.") continue inference_results[f"attachment_{attachment_num}"] = result return inference_results except Exception as e: print(f"Error in perform_inference: {e}") return {"status": "error", "message": "Text extraction failed."} # Routes @app.get("/") def greet_json(): return {"Hello": "World!"} @app.post("/api/aadhar_ocr") async def aadhar_ocr( aadhar_file: UploadFile = File(None), pan_file: UploadFile = File(None), cheque_file: UploadFile = File(None), gst_file: UploadFile = File(None), msme_file: UploadFile = File(None), cin_llpin_file: UploadFile = File(None), upload_to_s3: bool = True, ): # try: # Handle file uploads file_paths = {} for file_type, folder in UPLOAD_DIRS.items(): file = locals()[file_type] # Dynamically access the file arguments if file: # Save the file in the respective directory file_path = os.path.join(folder, file.filename) print("this is the filename", file.filename) with open(file_path, "wb") as buffer: shutil.copyfileobj(file.file, buffer) file_paths[file_type] = file_path # Log received files logging.info(f"Received files: {list(file_paths.keys())}") print("file_paths", file_paths) files = {} for key, f_path in file_paths.items(): name = os.path.splitext(os.path.basename(f_path))[0] # Determine id_type: for cin_llpin_file, explicitly set id_type to "cin_llpin" if key == "cin_llpin_file": id_type = "cin_llpin" else: id_type = key.split("_")[0] doc_type = os.path.splitext(f_path)[-1].lstrip(".") if key in ["msme_file", "cin_llpin_file", "aadhar_file"]: extracted_number = extract_document_number_from_file(f_path, id_type) if not extracted_number: logging.error(f"Failed to extract document number from {f_path}") raise HTTPException( status_code=400, detail=f"Invalid document format in {key}" ) files[key] = extracted_number + "&&" + f_path print("files", files[key]) else: # For other files, use existing preprocessing. preprocessing = doc_processing(name, id_type, doc_type, f_path) response = preprocessing.process() files[key] = response["output_p"] + "&&" + f_path # Perform inference result = perform_inference(files, upload_to_s3) print("this is the result we got", result) if "status" in list(result.keys()): raise Exception("Custom error message") # if result["status"] == "error": return {"status": "success", "result": result} @app.post("/api/document_ocr") async def document_ocr_s3(request: Request): try: body = await request.json() # Read JSON body logging.info(f"Received request body: {body}") except Exception as e: logging.error(f"Failed to parse JSON request: {e}") raise HTTPException(status_code=400, detail="Invalid JSON payload") # Extract file URLs url_mapping = { "pan_file": body.get("pan_file"), "gst_file": body.get("gst_file"), "msme_file": body.get("msme_file"), "cin_llpin_file": body.get("cin_llpin_file"), "cheque_file": body.get("cheque_file"), } upload_to_s3 = body.get("upload_to_s3", False) logging.info(f"URL Mapping: {url_mapping}") file_paths = {} for file_type, url in url_mapping.items(): if url: # local_filename = url.split("/")[-1] local_filename = urllib.parse.unquote(url.split("/")[-1]).replace(" ", "_") file_path = os.path.join(UPLOAD_DIRS[file_type], local_filename) try: logging.info(f"Attempting to download {url} for {file_type}...") response = requests.get(url, stream=True) response.raise_for_status() with open(file_path, "wb") as buffer: shutil.copyfileobj(response.raw, buffer) file_paths[file_type] = file_path logging.info(f"Successfully downloaded {file_type} to {file_path}") except requests.exceptions.RequestException as e: logging.error(f"Failed to download {url}: {e}") raise HTTPException( status_code=400, detail=f"Failed to download file from {url}" ) logging.info(f"Downloaded files: {list(file_paths.keys())}") files = {} for key, f_path in file_paths.items(): name = f_path.split("/")[-1].split(".")[0] if key == "cin_llpin_file": id_type = "cin_llpin" else: id_type = key.split("_")[0] # id_type = key.split("_")[0] doc_type = f_path.split("/")[-1].split(".")[-1] # For MSME and CIN/LLPIN files, extract document number via OCR and regex if key in ["msme_file", "cin_llpin_file", "aadhar_file"]: extracted_number = extract_document_number_from_file(f_path, id_type) if not extracted_number: logging.error(f"Failed to extract document number from {f_path}") raise HTTPException( status_code=400, detail=f"Invalid document format in {key}" ) files[key] = extracted_number + "&&" + f_path else: # For other documents, use the existing ML model preprocessing preprocessing = doc_processing(name, id_type, doc_type, f_path) response = preprocessing.process() files[key] = response["output_p"] + "&&" + f_path result = perform_inference(files, upload_to_s3) if "status" in list(result.keys()): raise HTTPException(status_code=500, detail="Custom error message") return {"status": "success", "result": result}