Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -2,7 +2,7 @@ import gradio as gr
|
|
2 |
from huggingface_hub import hf_hub_download
|
3 |
from llama_cpp import Llama
|
4 |
|
5 |
-
#
|
6 |
model = None
|
7 |
|
8 |
def load_model():
|
@@ -20,9 +20,9 @@ def load_model():
|
|
20 |
|
21 |
model = Llama(
|
22 |
model_path=model_path,
|
23 |
-
n_ctx=2048,
|
24 |
-
n_threads=4,
|
25 |
-
n_batch=512
|
26 |
)
|
27 |
|
28 |
print("Модель успешно инициализирована!")
|
@@ -42,9 +42,10 @@ def respond(message, history, system_message, max_new_tokens, temperature, top_p
|
|
42 |
for user_msg, assistant_msg in history:
|
43 |
context += f"User: {user_msg}\nAssistant: {assistant_msg}\n"
|
44 |
context += f"User: {message}\nAssistant: "
|
45 |
-
|
46 |
print(f"Генерируем ответ для контекста длиной {len(context)} символов")
|
47 |
|
|
|
|
|
48 |
# Используем генерацию с потоком
|
49 |
for response in model(
|
50 |
prompt=context,
|
@@ -52,12 +53,13 @@ def respond(message, history, system_message, max_new_tokens, temperature, top_p
|
|
52 |
temperature=temperature,
|
53 |
top_p=top_p,
|
54 |
stop=["User:", "\n\n", "<|endoftext|>"],
|
55 |
-
echo=False,
|
56 |
-
stream=True
|
57 |
):
|
58 |
-
|
59 |
-
|
60 |
-
|
|
|
61 |
|
62 |
print("Ответ сгенерирован полностью.")
|
63 |
|
@@ -66,47 +68,53 @@ def respond(message, history, system_message, max_new_tokens, temperature, top_p
|
|
66 |
print(error_msg)
|
67 |
yield error_msg
|
68 |
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
|
|
75 |
label="System message"
|
76 |
-
)
|
77 |
-
gr.Slider(
|
78 |
-
minimum=1,
|
79 |
-
maximum=2048,
|
80 |
-
value=512,
|
81 |
-
step=1,
|
82 |
label="Max new tokens"
|
83 |
-
)
|
84 |
-
gr.Slider(
|
85 |
-
minimum=0.1,
|
86 |
-
maximum=2.0,
|
87 |
-
value=0.3,
|
88 |
-
step=0.1,
|
89 |
label="Temperature"
|
90 |
-
)
|
91 |
-
gr.Slider(
|
92 |
minimum=0.1,
|
93 |
maximum=1.0,
|
94 |
value=0.95,
|
95 |
-
step=0.05,
|
96 |
label="Top-p (nucleus sampling)"
|
97 |
-
)
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
|
109 |
-
# Запускаем приложение
|
110 |
if __name__ == "__main__":
|
111 |
try:
|
112 |
print("Инициализация приложения...")
|
|
|
2 |
from huggingface_hub import hf_hub_download
|
3 |
from llama_cpp import Llama
|
4 |
|
5 |
+
# Глобальная модель
|
6 |
model = None
|
7 |
|
8 |
def load_model():
|
|
|
20 |
|
21 |
model = Llama(
|
22 |
model_path=model_path,
|
23 |
+
n_ctx=2048,
|
24 |
+
n_threads=4,
|
25 |
+
n_batch=512
|
26 |
)
|
27 |
|
28 |
print("Модель успешно инициализирована!")
|
|
|
42 |
for user_msg, assistant_msg in history:
|
43 |
context += f"User: {user_msg}\nAssistant: {assistant_msg}\n"
|
44 |
context += f"User: {message}\nAssistant: "
|
|
|
45 |
print(f"Генерируем ответ для контекста длиной {len(context)} символов")
|
46 |
|
47 |
+
response_text = ""
|
48 |
+
|
49 |
# Используем генерацию с потоком
|
50 |
for response in model(
|
51 |
prompt=context,
|
|
|
53 |
temperature=temperature,
|
54 |
top_p=top_p,
|
55 |
stop=["User:", "\n\n", "<|endoftext|>"],
|
56 |
+
echo=False,
|
57 |
+
stream=True
|
58 |
):
|
59 |
+
chunk = response['choices'][0]['text']
|
60 |
+
response_text += chunk
|
61 |
+
print(f"Промежуточный ответ: {chunk}")
|
62 |
+
yield response_text # Отправляем накопленный текст
|
63 |
|
64 |
print("Ответ сгенерирован полностью.")
|
65 |
|
|
|
68 |
print(error_msg)
|
69 |
yield error_msg
|
70 |
|
71 |
+
with gr.Blocks() as demo:
|
72 |
+
chatbot = gr.Chatbot()
|
73 |
+
msg = gr.Textbox(label="Сообщение")
|
74 |
+
|
75 |
+
with gr.Accordion("Параметры", open=False):
|
76 |
+
system = gr.Textbox(
|
77 |
+
value="Ты дружелюбный и полезный ассистент. Отвечай обдуманно и по делу.",
|
78 |
label="System message"
|
79 |
+
)
|
80 |
+
max_new_tokens = gr.Slider(
|
81 |
+
minimum=1,
|
82 |
+
maximum=2048,
|
83 |
+
value=512,
|
84 |
+
step=1,
|
85 |
label="Max new tokens"
|
86 |
+
)
|
87 |
+
temperature = gr.Slider(
|
88 |
+
minimum=0.1,
|
89 |
+
maximum=2.0,
|
90 |
+
value=0.3,
|
91 |
+
step=0.1,
|
92 |
label="Temperature"
|
93 |
+
)
|
94 |
+
top_p = gr.Slider(
|
95 |
minimum=0.1,
|
96 |
maximum=1.0,
|
97 |
value=0.95,
|
98 |
+
step=0.05,
|
99 |
label="Top-p (nucleus sampling)"
|
100 |
+
)
|
101 |
+
|
102 |
+
clear = gr.Button("Очистить")
|
103 |
+
|
104 |
+
def user(user_message, history):
|
105 |
+
return "", history + [[user_message, None]]
|
106 |
+
|
107 |
+
def bot(history, system_message, max_new_tokens, temperature, top_p):
|
108 |
+
message = history[-1][0]
|
109 |
+
for response_text in respond(message, history[:-1], system_message, max_new_tokens, temperature, top_p):
|
110 |
+
history[-1][1] = response_text
|
111 |
+
yield history
|
112 |
+
|
113 |
+
msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then(
|
114 |
+
bot, [chatbot, system, max_new_tokens, temperature, top_p], chatbot
|
115 |
+
)
|
116 |
+
clear.click(lambda: None, None, chatbot, queue=False)
|
117 |
|
|
|
118 |
if __name__ == "__main__":
|
119 |
try:
|
120 |
print("Инициализация приложения...")
|