File size: 2,072 Bytes
05a057d
3521152
b866e46
05a057d
3521152
05a057d
 
 
 
 
3521152
05a057d
 
 
 
 
 
 
 
 
 
b866e46
05a057d
 
 
 
 
 
b866e46
05a057d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3521152
05a057d
3521152
05a057d
 
3521152
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
from transformers import AutoTokenizer, AutoModelForCausalLM
import gradio as gr
from typing import List, Tuple, Dict
import torch

# Load model and tokenizer
model_name = "AuriLab/gpt-bi-instruct-cesar"
tokenizer_name = "AuriLab/gpt-bi"
tokenizer = AutoTokenizer.from_pretrained(tokenizer_name)
model = AutoModelForCausalLM.from_pretrained(model_name)

def format_messages(history: List[Tuple[str, str]], system_message: str, user_message: str) -> str:
    # Format conversation history into a single string
    formatted_prompt = system_message + "\n\n"
    for user, assistant in history:
        if user:
            formatted_prompt += f"User: {user}\n"
        if assistant:
            formatted_prompt += f"Assistant: {assistant}\n"
    formatted_prompt += f"User: {user_message}\nAssistant:"
    return formatted_prompt

def respond(message: str, history: List[Tuple[str, str]]) -> str:
    system_message = """You are a helpful assistant. Follow these rules:
                    1. Provide diverse and varied responses
                    2. Avoid repeating the same words or phrases
                    3. Use synonyms and alternative expressions
                    4. Be concise and direct"""
    
    prompt = format_messages(history, system_message, message)
    inputs = tokenizer(prompt, return_tensors="pt", padding=True, truncation=True)
    
    # Generate response
    with torch.no_grad():
        outputs = model.generate(
            inputs["input_ids"],
            max_new_tokens=200,
            temperature=0.7,
            top_p=0.85,
            do_sample=True,
            pad_token_id=tokenizer.pad_token_id,
            eos_token_id=tokenizer.eos_token_id,
        )
    
    response = tokenizer.decode(outputs[0], skip_special_tokens=True)
    # Extract only the assistant's response
    response = response.split("Assistant:")[-1].strip()
    
    return response

# Create the Gradio interface with custom title
demo = gr.ChatInterface(
    fn=respond,
    title="Demo GPT-BI instruct",
)

if __name__ == "__main__":
    demo.launch()