Spaces:
Sleeping
Sleeping
File size: 1,288 Bytes
3521152 64b5a1f b866e46 3521152 64b5a1f 3521152 64b5a1f b866e46 64b5a1f b866e46 64b5a1f 3521152 64b5a1f 05a057d 3521152 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 |
import gradio as gr
from huggingface_hub import InferenceClient
from typing import List, Tuple, Dict
client = InferenceClient("AuriLab/gpt-bi-instruct-cesar")
def format_messages(history: List[Tuple[str, str]], system_message: str, user_message: str) -> List[Dict[str, str]]:
messages = [{"role": "system", "content": system_message}]
messages.extend([
{"role": "user" if i % 2 == 0 else "assistant", "content": msg}
for turn in history
for i, msg in enumerate(turn)
if msg
])
messages.append({"role": "user", "content": user_message})
return messages
def respond(message: str, history: List[Tuple[str, str]], system_message: str, max_tokens: int, temperature: float, top_p: float) -> str:
messages = format_messages(history, system_message, message)
response = ""
for msg in client.chat_completion(
messages,
max_tokens=max_tokens,
stream=True,
temperature=0.7, # Aumentado para más variedad
top_p=0.85, # Ajustado para mejor balance
):
token = msg.choices[0].delta.content
response += token
yield response
demo = gr.ChatInterface(
respond,
title="Demo GPT-BI instruct",
)
if __name__ == "__main__":
demo.launch()
|