File size: 1,678 Bytes
3521152
64b5a1f
b866e46
3521152
64b5a1f
3521152
64b5a1f
 
 
8ba4838
64b5a1f
 
8ba4838
64b5a1f
8ba4838
64b5a1f
b866e46
8ba4838
 
 
 
 
 
 
64b5a1f
 
b866e46
8ba4838
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3521152
 
8ba4838
05a057d
dd825f3
3521152
 
 
8ba4838
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
import gradio as gr
from huggingface_hub import InferenceClient
from typing import List, Tuple, Dict

client = InferenceClient("AuriLab/gpt-bi-instruct-cesar")

def format_messages(history: List[Tuple[str, str]], system_message: str, user_message: str) -> List[Dict[str, str]]:
    messages = [{"role": "system", "content": system_message}]
    messages.extend([
        {"role": "user" if i % 2 == 0 else "assistant", "content": str(msg)}  # Convert msg to string
        for turn in history
        for i, msg in enumerate(turn)
        if msg is not None
    ])
    messages.append({"role": "user", "content": str(user_message)})  # Convert user_message to string
    return messages

def respond(message: str, history: List[Tuple[str, str]]) -> str:
    # Default values for parameters
    system_message = "You are a helpful AI assistant."
    max_tokens = 1000
    temperature = 0.7
    top_p = 0.85
    
    messages = format_messages(history, system_message, message)
    response = ""
    
    try:
        for msg in client.chat_completion(
            messages,
            max_tokens=max_tokens,
            stream=True,
            temperature=temperature,
            top_p=top_p,
        ):
            if hasattr(msg.choices[0].delta, 'content'):
                token = msg.choices[0].delta.content
                if token is not None:
                    response += token
                    yield response
    except Exception as e:
        return f"Error: {str(e)}"

demo = gr.ChatInterface(
    fn=respond,
    title="Demo GPT-BI instruct",
    examples=["nola duzu izena?", "Nola egiten duzu?"]
)

if __name__ == "__main__":
    demo.launch(share=False)