import gradio as gr from huggingface_hub import InferenceClient from typing import List, Tuple, Dict client = InferenceClient("AuriLab/gpt-bi-instruct-cesar") def format_messages(history: List[Tuple[str, str]], system_message: str, user_message: str) -> List[Dict[str, str]]: messages = [{"role": "system", "content": system_message}] messages.extend([ {"role": "user" if i % 2 == 0 else "assistant", "content": str(msg)} # Convert msg to string for turn in history for i, msg in enumerate(turn) if msg is not None ]) messages.append({"role": "user", "content": str(user_message)}) # Convert user_message to string return messages def respond(message: str, history: List[Tuple[str, str]]) -> str: # Default values for parameters system_message = "You are a helpful AI assistant." max_tokens = 1000 temperature = 0.7 top_p = 0.85 messages = format_messages(history, system_message, message) response = "" try: for msg in client.chat_completion( messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): if hasattr(msg.choices[0].delta, 'content'): token = msg.choices[0].delta.content if token is not None: response += token yield response except Exception as e: return f"Error: {str(e)}" demo = gr.ChatInterface( fn=respond, title="Demo GPT-BI instruct", examples=["nola duzu izena?", "Nola egiten duzu?"] ) if __name__ == "__main__": demo.launch(share=False)