Spaces:
Sleeping
Sleeping
File size: 15,258 Bytes
8152a82 2fa693e 8152a82 d2ac459 6c36d86 ade7f8d 2fa693e 8152a82 ade7f8d 8152a82 d2ac459 8152a82 317211f 8152a82 317211f 8152a82 317211f d2ac459 8152a82 9b5fb59 8152a82 9b5fb59 8152a82 9b5fb59 8152a82 2fa693e 836a370 2fa693e 8152a82 2fa693e 8152a82 2fa693e c78677e 667ec6f c78677e 8152a82 2fa693e 8152a82 2fa693e 8dac1b1 2fa693e 8152a82 2fa693e 8152a82 8bc195d 2fa693e 8bc195d ed21393 667ec6f fd331b7 667ec6f ed21393 2fa693e 8152a82 836a370 8152a82 836a370 8152a82 2fa693e 8152a82 2fa693e 8152a82 2fa693e 8152a82 00ca9a0 16932c6 00ca9a0 2fca3c0 fdfc6c7 f03586e 00ca9a0 dd357d8 16932c6 e416a1c ee00948 e75cccb e416a1c 00ca9a0 8152a82 48cef06 8152a82 00ca9a0 8152a82 0ee1e49 ebab21a 8152a82 0ee1e49 8152a82 0ee1e49 8152a82 8ed1654 8152a82 04f52e4 f319991 8152a82 2fa693e 8152a82 2fa693e 8152a82 2fa693e 00ca9a0 2fa693e 0581b3c 2fa693e 8152a82 2fa693e 8152a82 2fa693e 9f4ab8c 2fa693e 04f52e4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 |
import base64
import os
import re
from io import BytesIO
from pathlib import Path
import gradio as gr
import pandas as pd
import json
from langchain.schema.output_parser import OutputParserException
from PIL import Image
import categories
from categories import Category
from main import process_image, process_pdf
HF_TOKEN = os.getenv("HF_TOKEN")
PDF_IFRAME = """
<div style="border-radius: 10px; width: 100%; overflow: hidden;">
<iframe
src="data:application/pdf;base64,{0}"
width="100%"
height="400"
type="application/pdf">
</iframe>
</div>"""
hf_writer_normal = gr.HuggingFaceDatasetSaver(
HF_TOKEN, "automatic-reimbursement-tool-demo", separate_dirs=False
)
hf_writer_incorrect = gr.HuggingFaceDatasetSaver(
HF_TOKEN, "automatic-reimbursement-tool-demo-incorrect", separate_dirs=False
)
# with open("examples/example1.pdf", "rb") as pdf_file:
# base64_pdf = base64.b64encode(pdf_file.read())
# example_paths = []
# current_file_path = None
# def ignore_examples(function):
# def new_function(*args, **kwargs):
# global example_paths, current_file_path
# if current_file_path not in example_paths:
# return function(*args, **kwargs)
def display_file(input_files):
global current_file_paths
# Initialize the list of current file paths
current_file_paths = [file.name for file in input_files]
if not input_files:
return gr.HTML.update(visible=False), gr.Image.update(visible=False)
# Check if there's any PDF file among the uploaded files
pdf_base64 = None
for input_file in input_files:
if input_file.name.endswith(".pdf"):
with open(input_file.name, "rb") as pdf_file:
pdf_base64 = base64.b64encode(pdf_file.read()).decode()
break # Assuming only one PDF is present
if pdf_base64:
return gr.HTML.update(PDF_IFRAME.format(pdf_base64), visible=True), gr.Image.update(visible=False)
else:
# You can choose to display the first image in the list or handle multiple images differently
image = Image.open(input_files[0].name)
return gr.HTML.update(visible=False), gr.Image.update(image, visible=True)
def show_intermediate_outputs(show_intermediate):
if show_intermediate:
return gr.Accordion.update(visible=True)
else:
return gr.Accordion.update(visible=False)
def show_share_contact(share_result):
return gr.Textbox.update(visible=share_result)
def clear_inputs():
return gr.File.update(value=None)
def clear_outputs(input_file):
if input_file:
return None, None, None, None
def extract_text(input_file):
"""Takes the input file and updates the extracted text"""
if not input_file:
gr.Error("Please upload a file to continue!")
return gr.Textbox.update()
# Send change to preprocessed image or to extracted text
if input_file.name.endswith(".pdf"):
text = process_pdf(Path(input_file.name), extract_only=True)
else:
text = process_image(Path(input_file.name), extract_only=True)
return text
def categorize_text(text):
"""Takes the extracted text and updates the category"""
category = categories.categorize_text(text)
return category
def query(category, text):
"""Takes the extracted text and category and updates the chatbot in two steps:
1. Construct a prompt
2. Generate a response
"""
#category = Category[category]
chain = categories.category_modules[category].chain
formatted_prompt = chain.prompt.format_prompt(
text=text,
format_instructions=chain.output_parser.get_format_instructions(),
)
question = f""
if len(formatted_prompt.messages) > 1:
question += f"**System:**\n{formatted_prompt.messages[0].content}"
question += f"\n\n**Human:**\n{formatted_prompt.messages[-1].content}"
yield gr.Chatbot.update([[question, "Generating..."]])
result = chain.generate(
input_list=[
{
"text": text,
"format_instructions": chain.output_parser.get_format_instructions(),
}
]
)
answer = result.generations[0][0].text
yield gr.Chatbot.update([[question, answer]])
PARSING_REGEXP = r"\*\*System:\*\*\n([\s\S]+)\n\n\*\*Human:\*\*\n([\s\S]+)"
def parse(category, chatbot):
"""Takes the chatbot prompt and response and updates the extracted information"""
global PARSING_REGEXP
chatbot_responses = []
for response in chatbot:
chatbot_responses.append(response[1])
if not chatbot_responses:
# Handle the case when there are no chatbot responses
return {"status": "No responses available"}
answer = chatbot_responses[-1]
# try:
# answer = next(chatbot)[1]
# except StopIteration:
# answer = ""
if category not in Category.__members__:
# Handle the case when an invalid category is provided
answer="test"
#category = Category[category]
chain = categories.category_modules[category].chain
yield {"status": "Parsing response..."}
try:
information = chain.output_parser.parse(answer)
information = information.json() if information else {}
except OutputParserException as e:
information = {
"details": str(e),
"output": e.llm_output,
}
yield information
def activate_flags():
return gr.Button.update(interactive=True), gr.Button.update(interactive=True)
def deactivate_flags():
return gr.Button.update(interactive=False), gr.Button.update(interactive=False)
def flag_if_shared(flag_method):
def proxy(share_result, request: gr.Request, *args, **kwargs):
if share_result:
return flag_method(request, *args, **kwargs)
return proxy
def process_and_output_files(input_files):
data = []
for file in input_files:
# Extract and categorize text for each file
text = extract_text(file)
category = categorize_text(text)
chatbot_response = query(category, text) # Convert the generator to a list
#parsed_info = parse(category, chatbot_response)
chats=list(chatbot_response)
# Append the relevant data for this file to the output_data list
# data.append(
# #"File Name": file.name,
# #"Extracted Text": text,
# #"Category": category,
# #"Chatbot Response": chatbot_response, # Access the first element as a list
# #"trial" : chats,
# chats[1]["value"][0][1] ,
# )
response_dict = json.loads(chats[1]["value"][0][1])
# Extract the relevant data
extracted_data = {
"Category": category,
"UIDs": response_dict.get("uids"),
"Total": response_dict.get("total")
}
# Append the relevant data for this file to the data list
data.append(extracted_data)
#data_dicts = [json.loads(item[0]) for item in data]
return data
with gr.Blocks(title="Automatic Reimbursement Tool Demo") as page:
gr.Markdown("<center><h1>Automatic Reimbursement Tool Demo</h1></center>")
gr.Markdown("<h2>Description</h2>")
gr.Markdown(
"The reimbursement filing process can be time-consuming and cumbersome, causing "
"frustration for faculty members and finance departments. Our project aims to "
"automate the information extraction involved in the process by feeding "
"extracted text to language models such as ChatGPT. This demo showcases the "
"categorization and extraction parts of the pipeline. Categorization is done "
"to identify the relevant details associated with the text, after which "
"extraction is done for those details using a language model."
)
gr.Markdown("<h2>Try it out!</h2>")
with gr.Box() as demo:
with gr.Row():
with gr.Column(variant="panel"):
gr.HTML(
'<div><center style="color:rgb(200, 200, 200);">Input</center></div>'
)
pdf_preview = gr.HTML(label="Preview", show_label=True, visible=False)
image_preview = gr.Image(
label="Preview", show_label=True, visible=False, height=350
)
input_file = gr.File(
label="Input receipt",
show_label=True,
type="file",
file_count="multiple",
file_types=["image", ".pdf"],
)
input_file.change(
display_file, input_file, [pdf_preview, image_preview]
)
with gr.Row():
clear = gr.Button("Clear", variant="secondary")
submit_button = gr.Button("Submit", variant="primary")
show_intermediate = gr.Checkbox(
False,
label="Show intermediate outputs",
info="There are several intermediate steps in the process such as "
"preprocessing, OCR, chatbot interaction. You can choose to "
"show their results here.",
visible=False, # Shortcut for removal
)
share_result = gr.Checkbox(
True,
label="Share results",
info="Sharing your result with us will help us improve this tool.",
interactive=True,
)
contact = gr.Textbox(
type="email",
label="Contact",
interactive=True,
placeholder="Enter your email address",
info="Optionally, enter your email address to allow us to contact "
"you regarding your result.",
visible=True,
)
share_result.change(show_share_contact, share_result, [contact])
with gr.Column(variant="panel"):
gr.HTML(
'<div><center style="color:rgb(200, 200, 200);">Output</center></div>'
)
category = gr.Dropdown(
value=None,
choices=Category.__members__.keys(),
label=f"Recognized category ({', '.join(Category.__members__.keys())})",
show_label=True,
interactive=False,
)
intermediate_outputs = gr.Accordion(
"Intermediate outputs", open=True, visible=False
)
with intermediate_outputs:
extracted_text = gr.Textbox(
label="Extracted text",
show_label=True,
max_lines=5,
show_copy_button=True,
lines=5,
interactive=False,
)
chatbot = gr.Chatbot(
None,
label="Chatbot interaction",
show_label=True,
interactive=False,
height=240,
)
information = gr.JSON(label="Extracted information")
with gr.Row():
flag_incorrect_button = gr.Button(
"Flag as incorrect", variant="stop", interactive=True
)
flag_irrelevant_button = gr.Button(
"Flag as irrelevant", variant="stop", interactive=True
)
show_intermediate.change(
show_intermediate_outputs, show_intermediate, [intermediate_outputs]
)
clear.click(clear_inputs, None, [input_file]).then(
deactivate_flags,
None,
[flag_incorrect_button, flag_irrelevant_button],
)
hf_writer_normal.setup(
[input_file, extracted_text, category, chatbot, information, contact],
flagging_dir="flagged",
)
flag_method = gr.flagging.FlagMethod(
hf_writer_normal, "", "", visual_feedback=False
)
submit_button.click(
clear_outputs,
[input_file],
[extracted_text, category, chatbot, information],
).then(
process_and_output_files,
[input_file],
[information],
).then(
flag_if_shared(flag_method),
[
share_result,
input_file,
extracted_text,
category,
chatbot,
information,
contact,
],
None,
preprocess=False,
)
hf_writer_incorrect.setup(
[input_file, extracted_text, category, chatbot, information, contact],
flagging_dir="flagged_incorrect",
)
flag_incorrect_method = gr.flagging.FlagMethod(
hf_writer_incorrect,
"Flag as incorrect",
"Incorrect",
visual_feedback=True,
)
flag_incorrect_button.click(
lambda: gr.Button.update(value="Saving...", interactive=False),
None,
flag_incorrect_button,
queue=False,
)
flag_incorrect_button.click(
flag_incorrect_method,
inputs=[
input_file,
extracted_text,
category,
chatbot,
information,
contact,
],
outputs=[flag_incorrect_button],
preprocess=False,
queue=False,
)
flag_irrelevant_method = gr.flagging.FlagMethod(
hf_writer_incorrect,
"Flag as irrelevant",
"Irrelevant",
visual_feedback=True,
)
flag_irrelevant_button.click(
lambda: gr.Button.update(value="Saving...", interactive=False),
None,
flag_irrelevant_button,
queue=False,
)
flag_irrelevant_button.click(
flag_irrelevant_method,
inputs=[
input_file,
extracted_text,
category,
chatbot,
information,
contact,
],
outputs=[flag_irrelevant_button],
preprocess=False,
queue=False,
)
page.queue(
concurrency_count=20,
max_size=1,
)
page.launch(show_api=True, show_error=True, debug=True)
|