demo / app.py
qq1023's picture
Update app.py
04f52e4
raw
history blame
14.9 kB
import base64
import os
import re
from io import BytesIO
from pathlib import Path
import gradio as gr
import pandas as pd
import json
from langchain.schema.output_parser import OutputParserException
from PIL import Image
import categories
from categories import Category
from main import process_image, process_pdf
HF_TOKEN = os.getenv("HF_TOKEN")
PDF_IFRAME = """
<div style="border-radius: 10px; width: 100%; overflow: hidden;">
<iframe
src="data:application/pdf;base64,{0}"
width="100%"
height="400"
type="application/pdf">
</iframe>
</div>"""
hf_writer_normal = gr.HuggingFaceDatasetSaver(
HF_TOKEN, "automatic-reimbursement-tool-demo", separate_dirs=False
)
hf_writer_incorrect = gr.HuggingFaceDatasetSaver(
HF_TOKEN, "automatic-reimbursement-tool-demo-incorrect", separate_dirs=False
)
# with open("examples/example1.pdf", "rb") as pdf_file:
# base64_pdf = base64.b64encode(pdf_file.read())
# example_paths = []
# current_file_path = None
# def ignore_examples(function):
# def new_function(*args, **kwargs):
# global example_paths, current_file_path
# if current_file_path not in example_paths:
# return function(*args, **kwargs)
def display_file(input_files):
global current_file_paths
# Initialize the list of current file paths
current_file_paths = [file.name for file in input_files]
if not input_files:
return gr.HTML.update(visible=False), gr.Image.update(visible=False)
# Check if there's any PDF file among the uploaded files
pdf_base64 = None
for input_file in input_files:
if input_file.name.endswith(".pdf"):
with open(input_file.name, "rb") as pdf_file:
pdf_base64 = base64.b64encode(pdf_file.read()).decode()
break # Assuming only one PDF is present
if pdf_base64:
return gr.HTML.update(PDF_IFRAME.format(pdf_base64), visible=True), gr.Image.update(visible=False)
else:
# You can choose to display the first image in the list or handle multiple images differently
image = Image.open(input_files[0].name)
return gr.HTML.update(visible=False), gr.Image.update(image, visible=True)
def show_intermediate_outputs(show_intermediate):
if show_intermediate:
return gr.Accordion.update(visible=True)
else:
return gr.Accordion.update(visible=False)
def show_share_contact(share_result):
return gr.Textbox.update(visible=share_result)
def clear_inputs():
return gr.File.update(value=None)
def clear_outputs(input_file):
if input_file:
return None, None, None, None
def extract_text(input_file):
"""Takes the input file and updates the extracted text"""
if not input_file:
gr.Error("Please upload a file to continue!")
return gr.Textbox.update()
# Send change to preprocessed image or to extracted text
if input_file.name.endswith(".pdf"):
text = process_pdf(Path(input_file.name), extract_only=True)
else:
text = process_image(Path(input_file.name), extract_only=True)
return text
def categorize_text(text):
"""Takes the extracted text and updates the category"""
category = categories.categorize_text(text)
return category
def query(category, text):
"""Takes the extracted text and category and updates the chatbot in two steps:
1. Construct a prompt
2. Generate a response
"""
#category = Category[category]
chain = categories.category_modules[category].chain
formatted_prompt = chain.prompt.format_prompt(
text=text,
format_instructions=chain.output_parser.get_format_instructions(),
)
question = f""
if len(formatted_prompt.messages) > 1:
question += f"**System:**\n{formatted_prompt.messages[0].content}"
question += f"\n\n**Human:**\n{formatted_prompt.messages[-1].content}"
yield gr.Chatbot.update([[question, "Generating..."]])
result = chain.generate(
input_list=[
{
"text": text,
"format_instructions": chain.output_parser.get_format_instructions(),
}
]
)
answer = result.generations[0][0].text
yield gr.Chatbot.update([[question, answer]])
PARSING_REGEXP = r"\*\*System:\*\*\n([\s\S]+)\n\n\*\*Human:\*\*\n([\s\S]+)"
def parse(category, chatbot):
"""Takes the chatbot prompt and response and updates the extracted information"""
global PARSING_REGEXP
chatbot_responses = []
for response in chatbot:
chatbot_responses.append(response[1])
if not chatbot_responses:
# Handle the case when there are no chatbot responses
return {"status": "No responses available"}
answer = chatbot_responses[-1]
# try:
# answer = next(chatbot)[1]
# except StopIteration:
# answer = ""
if category not in Category.__members__:
# Handle the case when an invalid category is provided
answer="test"
#category = Category[category]
chain = categories.category_modules[category].chain
yield {"status": "Parsing response..."}
try:
information = chain.output_parser.parse(answer)
information = information.json() if information else {}
except OutputParserException as e:
information = {
"details": str(e),
"output": e.llm_output,
}
yield information
def activate_flags():
return gr.Button.update(interactive=True), gr.Button.update(interactive=True)
def deactivate_flags():
return gr.Button.update(interactive=False), gr.Button.update(interactive=False)
def flag_if_shared(flag_method):
def proxy(share_result, request: gr.Request, *args, **kwargs):
if share_result:
return flag_method(request, *args, **kwargs)
return proxy
def process_and_output_files(input_files):
data = []
for file in input_files:
# Extract and categorize text for each file
text = extract_text(file)
category = categorize_text(text)
chatbot_response = query(category, text) # Convert the generator to a list
#parsed_info = parse(category, chatbot_response)
chats=list(chatbot_response)
# Append the relevant data for this file to the output_data list
data.append(
#"File Name": file.name,
#"Extracted Text": text,
#"Category": category,
#"Chatbot Response": chatbot_response, # Access the first element as a list
#"trial" : chats,
chats[1]["value"][0][1] ,
)
data_dicts = [json.loads(item[0]) for item in data]
return data_dicts
with gr.Blocks(title="Automatic Reimbursement Tool Demo") as page:
gr.Markdown("<center><h1>Automatic Reimbursement Tool Demo</h1></center>")
gr.Markdown("<h2>Description</h2>")
gr.Markdown(
"The reimbursement filing process can be time-consuming and cumbersome, causing "
"frustration for faculty members and finance departments. Our project aims to "
"automate the information extraction involved in the process by feeding "
"extracted text to language models such as ChatGPT. This demo showcases the "
"categorization and extraction parts of the pipeline. Categorization is done "
"to identify the relevant details associated with the text, after which "
"extraction is done for those details using a language model."
)
gr.Markdown("<h2>Try it out!</h2>")
with gr.Box() as demo:
with gr.Row():
with gr.Column(variant="panel"):
gr.HTML(
'<div><center style="color:rgb(200, 200, 200);">Input</center></div>'
)
pdf_preview = gr.HTML(label="Preview", show_label=True, visible=False)
image_preview = gr.Image(
label="Preview", show_label=True, visible=False, height=350
)
input_file = gr.File(
label="Input receipt",
show_label=True,
type="file",
file_count="multiple",
file_types=["image", ".pdf"],
)
input_file.change(
display_file, input_file, [pdf_preview, image_preview]
)
with gr.Row():
clear = gr.Button("Clear", variant="secondary")
submit_button = gr.Button("Submit", variant="primary")
show_intermediate = gr.Checkbox(
False,
label="Show intermediate outputs",
info="There are several intermediate steps in the process such as "
"preprocessing, OCR, chatbot interaction. You can choose to "
"show their results here.",
visible=False, # Shortcut for removal
)
share_result = gr.Checkbox(
True,
label="Share results",
info="Sharing your result with us will help us improve this tool.",
interactive=True,
)
contact = gr.Textbox(
type="email",
label="Contact",
interactive=True,
placeholder="Enter your email address",
info="Optionally, enter your email address to allow us to contact "
"you regarding your result.",
visible=True,
)
share_result.change(show_share_contact, share_result, [contact])
with gr.Column(variant="panel"):
gr.HTML(
'<div><center style="color:rgb(200, 200, 200);">Output</center></div>'
)
category = gr.Dropdown(
value=None,
choices=Category.__members__.keys(),
label=f"Recognized category ({', '.join(Category.__members__.keys())})",
show_label=True,
interactive=False,
)
intermediate_outputs = gr.Accordion(
"Intermediate outputs", open=True, visible=False
)
with intermediate_outputs:
extracted_text = gr.Textbox(
label="Extracted text",
show_label=True,
max_lines=5,
show_copy_button=True,
lines=5,
interactive=False,
)
chatbot = gr.Chatbot(
None,
label="Chatbot interaction",
show_label=True,
interactive=False,
height=240,
)
information = gr.JSON(label="Extracted information")
with gr.Row():
flag_incorrect_button = gr.Button(
"Flag as incorrect", variant="stop", interactive=True
)
flag_irrelevant_button = gr.Button(
"Flag as irrelevant", variant="stop", interactive=True
)
show_intermediate.change(
show_intermediate_outputs, show_intermediate, [intermediate_outputs]
)
clear.click(clear_inputs, None, [input_file]).then(
deactivate_flags,
None,
[flag_incorrect_button, flag_irrelevant_button],
)
hf_writer_normal.setup(
[input_file, extracted_text, category, chatbot, information, contact],
flagging_dir="flagged",
)
flag_method = gr.flagging.FlagMethod(
hf_writer_normal, "", "", visual_feedback=False
)
submit_button.click(
clear_outputs,
[input_file],
[extracted_text, category, chatbot, information],
).then(
process_and_output_files,
[input_file],
[information],
).then(
flag_if_shared(flag_method),
[
share_result,
input_file,
extracted_text,
category,
chatbot,
information,
contact,
],
None,
preprocess=False,
)
hf_writer_incorrect.setup(
[input_file, extracted_text, category, chatbot, information, contact],
flagging_dir="flagged_incorrect",
)
flag_incorrect_method = gr.flagging.FlagMethod(
hf_writer_incorrect,
"Flag as incorrect",
"Incorrect",
visual_feedback=True,
)
flag_incorrect_button.click(
lambda: gr.Button.update(value="Saving...", interactive=False),
None,
flag_incorrect_button,
queue=False,
)
flag_incorrect_button.click(
flag_incorrect_method,
inputs=[
input_file,
extracted_text,
category,
chatbot,
information,
contact,
],
outputs=[flag_incorrect_button],
preprocess=False,
queue=False,
)
flag_irrelevant_method = gr.flagging.FlagMethod(
hf_writer_incorrect,
"Flag as irrelevant",
"Irrelevant",
visual_feedback=True,
)
flag_irrelevant_button.click(
lambda: gr.Button.update(value="Saving...", interactive=False),
None,
flag_irrelevant_button,
queue=False,
)
flag_irrelevant_button.click(
flag_irrelevant_method,
inputs=[
input_file,
extracted_text,
category,
chatbot,
information,
contact,
],
outputs=[flag_irrelevant_button],
preprocess=False,
queue=False,
)
page.queue(
concurrency_count=20,
max_size=1,
)
page.launch(show_api=True, show_error=True, debug=True)