Spaces:
Sleeping
Sleeping
from .model import InformationExtractedFromABillReceipt as PydanticModel | |
from langchain.chains import LLMChain | |
from langchain.chat_models import ChatOpenAI | |
from langchain.output_parsers import PydanticOutputParser, OutputFixingParser | |
from langchain.prompts import ( | |
ChatPromptTemplate, | |
HumanMessagePromptTemplate, | |
SystemMessagePromptTemplate, | |
) | |
model = ChatOpenAI( | |
temperature=0, | |
n=1, | |
model_kwargs= { | |
'stop': None, | |
'top_p': 1, | |
'frequency_penalty': 0, | |
'presence_penalty': 0, | |
} | |
) | |
# Build categorizing chain | |
system_message_prompt = SystemMessagePromptTemplate.from_template( | |
"You are an information extraction engine that outputs details from OCR processed " | |
"documents such as date/time/place of departure and arrival.\n" | |
"{format_instructions}" | |
) | |
human_message_prompt = HumanMessagePromptTemplate.from_template("{text}") | |
chat_prompt = ChatPromptTemplate.from_messages( | |
[system_message_prompt, human_message_prompt] | |
) | |
output_parser = PydanticOutputParser(pydantic_object=PydanticModel) | |
fixing_parser = OutputFixingParser.from_llm(llm=model, parser=output_parser) | |
chain = LLMChain( | |
llm=model, prompt=chat_prompt, output_parser=fixing_parser | |
) |