|
import gradio as gr
|
|
from transformers import T5ForConditionalGeneration, T5Tokenizer
|
|
|
|
|
|
model_name = "AventIQ-AI/T5-small-grammar-correction"
|
|
model = T5ForConditionalGeneration.from_pretrained(model_name)
|
|
tokenizer = T5Tokenizer.from_pretrained(model_name)
|
|
|
|
def correct_grammar(text):
|
|
input_text = "correct: " + text
|
|
inputs = tokenizer(input_text, return_tensors="pt", max_length=512, truncation=True)
|
|
outputs = model.generate(**inputs, max_length=512)
|
|
corrected_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
|
return corrected_text
|
|
|
|
|
|
examples = [
|
|
["She go to the market yesterday."],
|
|
["He don't like playing football."],
|
|
["I has a new phone."]
|
|
]
|
|
|
|
|
|
with gr.Blocks() as demo:
|
|
gr.Markdown("# π Grammar Correction System")
|
|
gr.Markdown("Enter a sentence with grammatical errors, and the model will correct it!")
|
|
|
|
with gr.Row():
|
|
input_text = gr.Textbox(label="Enter Text", placeholder="Type a grammatically incorrect sentence here...")
|
|
|
|
output_text = gr.Textbox(label="Corrected Text")
|
|
correct_button = gr.Button("Correct Grammar")
|
|
|
|
correct_button.click(correct_grammar, inputs=[input_text], outputs=[output_text])
|
|
|
|
gr.Examples(examples, inputs=[input_text])
|
|
|
|
demo.launch() |