ayushsinha's picture
Upload 2 files
2dda026 verified
import gradio as gr
from transformers import T5ForConditionalGeneration, T5Tokenizer
# Load model and tokenizer
model_name = "AventIQ-AI/T5-small-grammar-correction"
model = T5ForConditionalGeneration.from_pretrained(model_name)
tokenizer = T5Tokenizer.from_pretrained(model_name)
def correct_grammar(text):
input_text = "correct: " + text
inputs = tokenizer(input_text, return_tensors="pt", max_length=512, truncation=True)
outputs = model.generate(**inputs, max_length=512)
corrected_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
return corrected_text
# Example inputs
examples = [
["She go to the market yesterday."],
["He don't like playing football."],
["I has a new phone."]
]
# Gradio Interface
with gr.Blocks() as demo:
gr.Markdown("# πŸ“ Grammar Correction System")
gr.Markdown("Enter a sentence with grammatical errors, and the model will correct it!")
with gr.Row():
input_text = gr.Textbox(label="Enter Text", placeholder="Type a grammatically incorrect sentence here...")
output_text = gr.Textbox(label="Corrected Text")
correct_button = gr.Button("Correct Grammar")
correct_button.click(correct_grammar, inputs=[input_text], outputs=[output_text])
gr.Examples(examples, inputs=[input_text])
demo.launch()