import gradio as gr import torch from transformers import AutoModelForCausalLM, AutoTokenizer # Load the model and tokenizer model_name = "AventIQ-AI/gpt2-book-article-recommendation" device = "cuda" if torch.cuda.is_available() else "cpu" model = AutoModelForCausalLM.from_pretrained(model_name).to(device) tokenizer = AutoTokenizer.from_pretrained(model_name) def recommend_titles(alphabet, num_recommendations=5): """Generate book/article recommendations based on an input alphabet.""" input_text = alphabet.strip() if not input_text: return ["⚠️ Please enter a valid letter."] input_ids = tokenizer.encode(input_text, return_tensors="pt").to(device) with torch.no_grad(): outputs = model.generate(input_ids, max_length=15, num_return_sequences=num_recommendations, do_sample=True) return [tokenizer.decode(output, skip_special_tokens=True) for output in outputs] # Example Inputs example_inputs = ["A", "B", "C", "D", "E"] # Create Gradio Interface with gr.Blocks() as demo: gr.Markdown("## 📚 AI-Powered Book & Article Recommendation") gr.Markdown("Enter a letter, and the AI will suggest relevant book or article titles!") with gr.Row(): alphabet_input = gr.Textbox(label="🔠 Enter a Letter:", placeholder="Example: A") num_recommendations = gr.Slider(minimum=1, maximum=10, value=5, step=1, label="Number of Recommendations") recommend_button = gr.Button("📖 Get Recommendations") output_text = gr.Textbox(label="📄 Recommended Titles:", lines=6) gr.Markdown("### 🎯 Example Inputs") example_buttons = [gr.Button(example) for example in example_inputs] for btn in example_buttons: btn.click(fn=lambda letter=btn.value: letter, outputs=alphabet_input) recommend_button.click(recommend_titles, inputs=[alphabet_input, num_recommendations], outputs=output_text) demo.launch()