Upload 2 files
Browse files- app.py +41 -0
- requirements.txt +8 -0
app.py
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import pipeline
|
3 |
+
|
4 |
+
# Load Model
|
5 |
+
model_name = "AventIQ-AI/gpt2-next-word-prediction"
|
6 |
+
predictor = pipeline("text-generation", model=model_name)
|
7 |
+
|
8 |
+
def predict_next_word(prompt):
|
9 |
+
result = predictor(prompt, max_length=len(prompt.split()) + 1, num_return_sequences=1)
|
10 |
+
return result[0]['generated_text']
|
11 |
+
|
12 |
+
# Examples
|
13 |
+
examples = [
|
14 |
+
["Artificial intelligence is"],
|
15 |
+
["The future of technology"],
|
16 |
+
["Machine learning enables"],
|
17 |
+
["Deep learning models are"],
|
18 |
+
]
|
19 |
+
|
20 |
+
# Gradio Interface
|
21 |
+
def main():
|
22 |
+
with gr.Blocks(theme="soft") as demo:
|
23 |
+
gr.Markdown("""
|
24 |
+
# 🚀 Next-Word Prediction
|
25 |
+
Enter a partial sentence, and the model will predict the next word.
|
26 |
+
""")
|
27 |
+
|
28 |
+
with gr.Row():
|
29 |
+
input_text = gr.Textbox(label="Enter a sentence", placeholder="Type here...")
|
30 |
+
|
31 |
+
predict_btn = gr.Button("🔮 Predict Next Word")
|
32 |
+
output_text = gr.Textbox(label="Predicted Sentence", interactive=False)
|
33 |
+
|
34 |
+
predict_btn.click(predict_next_word, inputs=input_text, outputs=output_text)
|
35 |
+
|
36 |
+
gr.Examples(examples, inputs=input_text)
|
37 |
+
|
38 |
+
demo.launch()
|
39 |
+
|
40 |
+
if __name__ == "__main__":
|
41 |
+
main()
|
requirements.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch
|
2 |
+
transformers
|
3 |
+
gradio
|
4 |
+
sentencepiece
|
5 |
+
torchvision
|
6 |
+
huggingface_hub
|
7 |
+
pillow
|
8 |
+
numpy
|