import gradio as gr from transformers import pipeline # Load Model model_name = "AventIQ-AI/gpt2-next-word-prediction" predictor = pipeline("text-generation", model=model_name) def predict_next_word(prompt): result = predictor(prompt, max_length=len(prompt.split()) + 1, num_return_sequences=1) return result[0]['generated_text'] # Examples examples = [ ["Artificial intelligence is"], ["The future of technology"], ["Machine learning enables"], ["Deep learning models are"], ] # Gradio Interface def main(): with gr.Blocks(theme="soft") as demo: gr.Markdown(""" # 🚀 Next-Word Prediction Enter a partial sentence, and the model will predict the next word. """) with gr.Row(): input_text = gr.Textbox(label="Enter a sentence", placeholder="Type here...") predict_btn = gr.Button("🔮 Predict Next Word") output_text = gr.Textbox(label="Predicted Sentence", interactive=False) predict_btn.click(predict_next_word, inputs=input_text, outputs=output_text) gr.Examples(examples, inputs=input_text) demo.launch() if __name__ == "__main__": main()