Spaces:
Sleeping
Sleeping
File size: 21,497 Bytes
42ac7a7 4c58d1a 301dabc 2d6cc10 2b68e1c c7c24fa af780c2 42ac7a7 eabc080 42ac7a7 eabc080 42ac7a7 eabc080 42ac7a7 a8d4087 af780c2 42ac7a7 37a7f78 42ac7a7 e7a2440 42ac7a7 e7a2440 42ac7a7 c7c24fa 42ac7a7 a8d4087 42ac7a7 37a7f78 42ac7a7 2d6cc10 42ac7a7 2d6cc10 42ac7a7 2d6cc10 42ac7a7 2d6cc10 42ac7a7 2d6cc10 42ac7a7 2d6cc10 42ac7a7 2d6cc10 42ac7a7 2d6cc10 42ac7a7 2d6cc10 42ac7a7 2d6cc10 42ac7a7 2d6cc10 42ac7a7 2d6cc10 42ac7a7 2d6cc10 42ac7a7 2d6cc10 42ac7a7 2d6cc10 42ac7a7 2d6cc10 42ac7a7 2d6cc10 42ac7a7 2d6cc10 42ac7a7 2d6cc10 42ac7a7 2d6cc10 a8d4087 2d6cc10 42ac7a7 2d6cc10 42ac7a7 2d6cc10 42ac7a7 2d6cc10 42ac7a7 2d6cc10 4c58d1a 301dabc 4c58d1a 301dabc 4c58d1a 301dabc 4c58d1a e97fb87 4c58d1a 877ed20 301dabc 4c58d1a 301dabc 4c58d1a 301dabc e97fb87 4c58d1a 301dabc 4c58d1a 301dabc e97fb87 301dabc e97fb87 301dabc 4c58d1a 301dabc 4c58d1a 301dabc 724b95e 301dabc 9fb2486 7e0fb45 301dabc 466fffa 301dabc 4c58d1a 301dabc 4c58d1a 301dabc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 |
import os
import streamlit as st
import pandas as pd
import requests
import datetime
import plotly.express as px
cold_host = os.getenv("backend_cold")
hook_host = os.getenv("hook_host") # Corrected here
rengagment_host = os.getenv("rengagement_host")
CompanyBackendService=cold_host+'/receive_companies/'
UserBackendService=cold_host+'/receive_users/'
RengagementBackendService=rengagment_host+'/query/'
HookBackendService=hook_host+'/query/'
def add_https_to_urls(df, column_name):
"""
Adds 'https://' to URLs in the specified column of a DataFrame if they don't already start with a valid protocol.
Corrects URLs starting with 'http:/' or 'https:/'.
Handles missing values, trims whitespace, and is case-insensitive.
Parameters:
df (pandas.DataFrame): The DataFrame containing the URLs.
column_name (str): The name of the column with URLs.
"""
# Define a helper function to add or correct protocols
def correct_protocol(url):
if pd.isna(url) or url.strip() == '':
return url # Return as is if the URL is NaN or empty
url = url.strip() # Trim whitespace
lower_url = url.lower()
if lower_url.startswith('http:/') and not lower_url.startswith('http://'):
return 'http://' + url[6:]
elif lower_url.startswith('https:/') and not lower_url.startswith('https://'):
return 'https://' + url[7:]
elif not lower_url.startswith(('http://', 'https://')):
return 'https://' + url
return url
# Apply the helper function to the specified column
df[column_name] = df[column_name].apply(correct_protocol)
return df
def CompanySpecificClient(email_receiver):
input_data_companies = None
submitted_companies = False
uploaded_file = st.file_uploader("Kindly upload a CSV file that includes the names and websites of the companies", type=["csv"],key="CompanyUploader")
opt_out_scraping = st.checkbox("Opt out of scraping",key="CompanyScraper")
with st.form(key='Comapny_form'):
if uploaded_file is not None:
try:
# Detect file type and read accordingly
file_type = uploaded_file.name.split('.')[-1]
if file_type == 'csv':
df = pd.read_csv(uploaded_file)
elif file_type == 'xlsx':
df = pd.read_excel(uploaded_file)
# Check if 'Website' column exists
if 'Website' not in df.columns:
all_columns = df.columns.tolist()
website_column = st.selectbox("Select the column for Website:", all_columns,key="CompanyWebsite")
else:
website_column = 'Website'
# Check if 'Company Name for Emails' column exists
if 'Company Name for Emails' not in df.columns:
all_columns = df.columns.tolist()
company_column= st.selectbox("Select the column for Company Name for Emails:", all_columns,key="CompanyName")
else:
company_column = 'Company Name for Emails'
if 'Apollo description' not in df.columns:
all_columns = df.columns.tolist()
Apollo_description= st.selectbox("Select the column for Apollo description:", all_columns,key="ApolloDescription")
else:
Apollo_description = 'Apollo description'
if opt_out_scraping:
if 'Company Description' not in df.columns:
all_columns = df.columns.tolist()
description_column = st.selectbox("Select the column for Description:", all_columns,key="CompanyDescription")
df.rename(columns={description_column: 'scraped_content'}, inplace=True)
else:
df.rename(columns={'Company Description': 'scraped_content'}, inplace=True)
input_data_companies = df
except Exception as E :
st.error("An error occured while processing the file")
prompt_notes= st.text_input("If applicable please mention the network name",key="CompanyPromptNotes")
# If the button is clicked, it will return True for this run
button_clicked = st.form_submit_button("Submit for processing")
# 2. Update session state for the button
if button_clicked:
submitted_companies = True
# Set the session state to the new value
prompt_notes = prompt_notes
# 3. Use the session state variable to determine if the button was previously clicked
if submitted_companies and input_data_companies is not None:
df = input_data_companies
if not opt_out_scraping:
df[website_column] = df[website_column].astype(str)
df=df[[website_column,company_column,Apollo_description]]
df.columns = ["Website","Company Name for Emails","Apollo description"]
df = df.drop_duplicates(subset="Website", keep='first')
df = df.dropna().loc[~(df == '').all(axis=1)]
else:
df[website_column] = df[website_column].astype(str)
df=df[[website_column,company_column,Apollo_description,"scraped_content"]]
df.columns = ["Website","Company Name for Emails","Apollo description","scraped_content"]
df = df.drop_duplicates(subset="Website", keep='first')
df = df.dropna().loc[~(df == '').all(axis=1)]
df = df.dropna(how='all')
df = df.loc[~(df == '').all(axis=1)]
df=add_https_to_urls(df, 'Website')
st.write(df)
# Convert DataFrame to CSV for transmission
csv = df.to_csv(index=False)
# Construct the data to send
data_to_send = {"prompt_notes": prompt_notes, "dataframe": csv,"email_receiver":email_receiver,"filename": uploaded_file.name}
# Sending the POST request to FastAPI
response = requests.post(CompanyBackendService, json=data_to_send)
if response.status_code == 200:
st.info(f"We're processing your request. You can close the app now. An email will be sent to {email_receiver} once the process is finished.")
else:
st.error("Data transmission failed. Please verify that your file contains the labels 'Company Website' and 'Company Name'. Additionally, ensure that your file is valid and contains records and try again , if the problem persists please contact us at [email protected]")
return None
def UserSpecificClient(email_receiver):
input_data=None
submitted=None
column_selections = {}
uploaded_file = st.file_uploader("Kindly upload a CSV file that includes the names and websites of the companies", type=["csv"],key="UserUploader")
opt_out_scraping = st.checkbox("Opt out of scraping",key="userSraping")
with st.form(key='User_Form'):
if uploaded_file is not None:
try:
# Detect file type and read accordingly
file_type = uploaded_file.name.split('.')[-1]
if file_type == 'csv':
try:
df = pd.read_csv(uploaded_file)
except:
df = pd.read_csv(uploaded_file, encoding='ISO-8859-1')
# Check if 'Person Linkedin Url' column exists
required_essential_columns = ['First Name','Company Name for Emails','Email']
missing_essential_columns = [col for col in required_essential_columns if col not in df.columns]
required_scraping_columns=['Title','Website','Last Name','Person Linkedin Url']
missing_scraping_columns = [col for col in required_scraping_columns if col not in df.columns]
for col in missing_essential_columns:
all_columns = df.columns.tolist()
selected_column = st.selectbox(f"Select the column for {col}:", all_columns,key=col)
column_selections[col] = selected_column
# Generate selectboxes for missing scraping columns if not opting out
if not opt_out_scraping:
for col in missing_scraping_columns:
all_columns = df.columns.tolist()
selected_column = st.selectbox(f"Select the column for {col}:", all_columns, key=col)
column_selections[col] = selected_column
# Process the column renaming based on the selections
for col, selected_column in column_selections.items():
df.rename(columns={selected_column: col}, inplace=True)
if opt_out_scraping:
if 'User Description' not in df.columns:
all_columns = df.columns.tolist()
description_column = st.selectbox("Select the column for Description:", all_columns,key="userdescription")
df.rename(columns={description_column: 'Scrapped Profile'}, inplace=True)
else:
df.rename(columns={'User Description': 'Scrapped Profile'}, inplace=True)
# Check if "Person Linkedin Url" is in the DataFrame
if 'Person Linkedin Url' not in df.columns:
# Use the DataFrame index to generate a unique value for each row
# You can adjust this to create a more complex identifier
df['Person Linkedin Url'] = 'LI_' + df.index.astype(str)
input_data = df
except Exception as E:
st.write(E)
st.error("An error occurred while processing the file")
# If the button is clicked, it will return True for this run
button_clicked = st.form_submit_button("Submit")
# Update session state for the button
if button_clicked:
submitted = True
# Use the session state variable to determine if the button was previously clicked
if submitted and input_data is not None:
df = input_data
df = df.drop_duplicates(subset="Person Linkedin Url", keep='first')
if opt_out_scraping:
df=df[['First Name','Company Name for Emails','Person Linkedin Url','Scrapped Profile','Email']]
else:
df=df[['First Name', 'Last Name', 'Title', 'Website','Company Name for Emails','Person Linkedin Url','Email']]
df=add_https_to_urls(df, 'Website')
# Convert DataFrame to CSV for transmission
df = df.dropna(how='all')
df = df.loc[~(df == '').all(axis=1)]
st.write(df)
csv = df.to_csv(index=False)
# Construct the data to send
data_to_send = {"dataframe": csv, "email_receiver": email_receiver,"email_template":"False","filename": uploaded_file.name}
# Sending the POST request to FastAPI
response = requests.post(UserBackendService, json=data_to_send)
if response.status_code == 200:
st.info(f"We're processing your request. You can close the app now. An email will be sent to {email_receiver} once the process is finished.")
else:
st.error("Data transmission failed. Please verify that your file contains the labels 'Company' and 'Person Linkedin Url'. Additionally, ensure that your file is valid and contains records and try again, if the problem persists please contact us at [email protected]")
def hooks(email_address):
account_stages = [
"Pre-Sales",
"Pre-Sales (Unresponsive, After Call)",
"Pre-Sales (Long-Term/ Cold)",
"Sales Opportunity",
"Closed Lost (Opportunity)",
"Current Client",
"Pre-Sales (Short-Term/ Hot)",
"Pre-Sales (Mid-Term/ Warm)",
"Project Cancelled"
]
query_types = ["blog", "announcement", "AI_trend"]
# Get the current number of queries from query params
if 'num_queries' not in st.session_state:
st.session_state.num_queries = 1
# Creating a form
with st.form(key='blog2lead_form'):
selected_stages = st.multiselect("**Select Account Stages (optional)**", options=account_stages,key="Account stages multi-select")
queries = {}
query_types_selected = []
# Add query fields based on the current number of queries
for i in range(st.session_state.num_queries):
cols = st.columns([3, 1]) # Adjust the width ratio here
with cols[0]:
query_label = ["first", "second", "third", "fourth", "fifth", "sixth", "seventh", "eighth", "ninth", "tenth"][i]
query = st.text_input(f"**Enter your {query_label} hook**", key=f"query_{i}", help="you can enter your hook directly or a url")
with cols[1]:
query_type = st.selectbox(f"**Select {query_label} hook type**", query_types, key=f"type_{i}")
if query.strip():
queries[query] = query_type
# Button to add more query fields
add_query = st.form_submit_button(label='Add another query')
submit_button = st.form_submit_button(label='Submit')
if add_query:
st.session_state.num_queries += 1
if submit_button:
if queries and email_address:
# Define your data payload to send
queries = {k: v for k, v in queries.items() if k and v}
data_to_send = {
"queries": queries,
"email_receiver": email_address,
}
# Add the filter to the payload only if selected_stages is not empty
if selected_stages:
data_to_send["filter"] = {
"Account Stage": {"$in": selected_stages}
}
# Sending the POST request to FastAPI
response = requests.post(HookBackendService, json=data_to_send)
# Handling the response
if response.status_code == 200:
st.info("Your request has been processed successfully.")
else:
st.error("Data transmission failed. Please try again later.")
else:
st.error("Please fill out all fields.")
def RengagmentEmail(email_receiver):
input_data_emails = None
submitted_emails = False
uploaded_file = st.file_uploader("Kindly upload a CSV file that includes the required columns", type=["csv"], key="Re-engagment email file uploader")
with st.form(key='Email_form'):
if uploaded_file is not None:
try:
# Detect file type and read accordingly
file_type = uploaded_file.name.split('.')[-1]
if file_type == 'csv':
df = pd.read_csv(uploaded_file)
elif file_type == 'xlsx':
df = pd.read_excel(uploaded_file)
# Check if required columns exist
required_columns = ['To Email', 'Subject', 'Body HTML', 'Reply Message', 'To Company', 'website']
missing_columns = [col for col in required_columns if col not in df.columns]
if missing_columns:
st.error(f"Missing columns: {', '.join(missing_columns)}")
else:
input_data_emails = df
except Exception as E:
st.error("An error occurred while processing the file")
# If the button is clicked, it will return True for this run
button_clicked = st.form_submit_button("Submit for processing")
# Update session state for the button
if button_clicked:
submitted_emails = True
# Use the session state variable to determine if the button was previously clicked
if submitted_emails and input_data_emails is not None:
df = input_data_emails
df = df.dropna(how='all')
df = df.loc[~(df == '').all(axis=1)]
st.write(df)
# Convert DataFrame to CSV for transmission
csv = df.to_csv(index=False)
# Construct the data to send
data_to_send = {"dataframe": csv, "email_receiver": email_receiver, "filename": uploaded_file.name}
# Sending the POST request to FastAPI
response = requests.post(RengagementBackendService, json=data_to_send)
if response.status_code == 200:
st.info(f"We're processing your request. You can close the app now. An email will be sent to {email_receiver} once the process is finished.")
else:
st.error("Data transmission failed. Please verify that your file contains the required columns and try again. If the problem persists, please contact us.")
return None
def fetch_analytics_data(host, start_of_last_week, end_of_last_week, start_of_this_week, end_of_this_week):
"""
Fetches analytics data from the specified host, processes it, and aggregates by week.
Parameters:
host (str): The host URL to query.
start_of_last_week (datetime): The start date of last week.
end_of_last_week (datetime): The end date of last week.
start_of_this_week (datetime): The start date of this week.
end_of_this_week (datetime): The end date of this week.
Returns:
pd.DataFrame: The processed and aggregated analytics data for this week and last week.
"""
endpoint = f"{host}/analytics/"
response = requests.get(endpoint)
if response.status_code != 200:
return pd.DataFrame()
data = response.json()
# Process the fetched data
records = []
for email_receiver, timestamps in data.items():
for timestamp, count in timestamps.items():
records.append({
'email_receiver': email_receiver,
'timestamp': pd.to_datetime(timestamp),
'Total Companies/Executives engaged': count
})
df = pd.DataFrame(records)
if df.empty:
return df
# Convert timestamp to datetime.date
df['day'] = df['timestamp'].dt.date
# Filter by date range
this_week_df = df[(df['day'] >= start_of_this_week) & (df['day'] <= end_of_this_week)]
this_week_df = this_week_df.groupby('email_receiver').agg({'Total Companies/Executives engaged': 'sum'}).reset_index()
last_week_df = df[(df['day'] >= start_of_last_week) & (df['day'] <= end_of_last_week)]
last_week_df = last_week_df.groupby('email_receiver').agg({'Total Companies/Executives engaged': 'sum'}).reset_index()
# Combine this week and last week data
this_week_df['Week'] = 'This Week'
last_week_df['Week'] = 'Last Week'
combined_df = pd.concat([this_week_df, last_week_df])
return combined_df
def display_analytics():
"""
Displays the analytics data with a time filter and plots.
"""
cold_host = os.getenv("backend_cold")
rengagement_host = os.getenv("rengagement_host")
hook_host = os.getenv("hook_host")
# Calculate the start and end of this week and last week
today = datetime.date.today()
start_of_this_week = today - datetime.timedelta(days=today.weekday())
end_of_this_week = start_of_this_week + datetime.timedelta(days=6)
start_of_last_week = start_of_this_week - datetime.timedelta(days=7)
end_of_last_week = start_of_last_week + datetime.timedelta(days=6)
cold_df = fetch_analytics_data(cold_host, start_of_last_week, end_of_last_week, start_of_this_week, end_of_this_week)
rengagement_df = fetch_analytics_data(rengagement_host, start_of_last_week, end_of_last_week, start_of_this_week, end_of_this_week)
hook_df = fetch_analytics_data(hook_host, start_of_last_week, end_of_last_week, start_of_this_week, end_of_this_week)
# Calculate the total count of all Total Companies/Executives engaged
total_engaged = (cold_df['Total Companies/Executives engaged'].sum() if not cold_df.empty else 0) + \
(rengagement_df['Total Companies/Executives engaged'].sum() if not rengagement_df.empty else 0) + \
(hook_df['Total Companies/Executives engaged'].sum() if not hook_df.empty else 0)
# Plotting the data
def plot_data(df, title):
if df.empty:
st.warning(f"No data available for {title}.")
return
fig = px.bar(df, x='email_receiver', y='Total Companies/Executives engaged', color='Week', barmode='group',
title=title, labels={'email_receiver': 'Email Receiver', 'Total Companies/Executives engaged': 'Total Companies/Executives Engaged'})
st.plotly_chart(fig)
st.html(f'<h4 class="hero-subtitle">In two weeks span, the SalesIntel has helped in generating {total_engaged:,} personalized emails so far</h4>')
col1, col2 = st.columns(2)
with col1:
plot_data(cold_df, 'Cold Emails')
with col2:
plot_data(hook_df, 'Re-engagement Hooks "Hook2Lead"')
plot_data(rengagement_df, 'Re-engagement Emails') |