import torch import torch.nn as nn from torch.nn.modules.rnn import LSTM class FeatureConversion(nn.Module): """ Integrates into the adjacent Dual-Path layer. Args: channels (int): Number of input channels. inverse (bool): If True, uses ifft; otherwise, uses rfft. """ def __init__(self, channels, inverse): super().__init__() self.inverse = inverse self.channels = channels def forward(self, x): # B, C, F, T = x.shape if self.inverse: x = x.float() x_r = x[:, :self.channels // 2, :, :] x_i = x[:, self.channels // 2:, :, :] x = torch.complex(x_r, x_i) x = torch.fft.irfft(x, dim=3, norm="ortho") else: x = x.float() x = torch.fft.rfft(x, dim=3, norm="ortho") x_real = x.real x_imag = x.imag x = torch.cat([x_real, x_imag], dim=1) return x class DualPathRNN(nn.Module): """ Dual-Path RNN in Separation Network. Args: d_model (int): The number of expected features in the input (input_size). expand (int): Expansion factor used to calculate the hidden_size of LSTM. bidirectional (bool): If True, becomes a bidirectional LSTM. """ def __init__(self, d_model, expand, bidirectional=True): super(DualPathRNN, self).__init__() self.d_model = d_model self.hidden_size = d_model * expand self.bidirectional = bidirectional # Initialize LSTM layers and normalization layers self.lstm_layers = nn.ModuleList([self._init_lstm_layer(self.d_model, self.hidden_size) for _ in range(2)]) self.linear_layers = nn.ModuleList([nn.Linear(self.hidden_size * 2, self.d_model) for _ in range(2)]) self.norm_layers = nn.ModuleList([nn.GroupNorm(1, d_model) for _ in range(2)]) def _init_lstm_layer(self, d_model, hidden_size): return LSTM(d_model, hidden_size, num_layers=1, bidirectional=self.bidirectional, batch_first=True) def forward(self, x): B, C, F, T = x.shape # Process dual-path rnn original_x = x # Frequency-path x = self.norm_layers[0](x) x = x.transpose(1, 3).contiguous().view(B * T, F, C) x, _ = self.lstm_layers[0](x) x = self.linear_layers[0](x) x = x.view(B, T, F, C).transpose(1, 3) x = x + original_x original_x = x # Time-path x = self.norm_layers[1](x) x = x.transpose(1, 2).contiguous().view(B * F, C, T).transpose(1, 2) x, _ = self.lstm_layers[1](x) x = self.linear_layers[1](x) x = x.transpose(1, 2).contiguous().view(B, F, C, T).transpose(1, 2) x = x + original_x return x class SeparationNet(nn.Module): """ Implements a simplified Sparse Down-sample block in an encoder architecture. Args: - channels (int): Number input channels. - expand (int): Expansion factor used to calculate the hidden_size of LSTM. - num_layers (int): Number of dual-path layers. """ def __init__(self, channels, expand=1, num_layers=6): super(SeparationNet, self).__init__() self.num_layers = num_layers self.dp_modules = nn.ModuleList([ DualPathRNN(channels * (2 if i % 2 == 1 else 1), expand) for i in range(num_layers) ]) self.feature_conversion = nn.ModuleList([ FeatureConversion(channels * 2, inverse=False if i % 2 == 0 else True) for i in range(num_layers) ]) def forward(self, x): for i in range(self.num_layers): x = self.dp_modules[i](x) x = self.feature_conversion[i](x) return x