Awk123 commited on
Commit
e51d1a5
·
1 Parent(s): b844928

upload files

Browse files
Files changed (2) hide show
  1. app.py +10 -588
  2. appv2.py +588 -0
app.py CHANGED
@@ -1,588 +1,10 @@
1
- # Dependencies: gradio, fire, langchain, openai, numpy, ffmpeg, moviepy
2
- # API Reference: https://www.gradio.app/docs/,
3
- # https://github.com/zhayujie/chatgpt-on-wechat, https://docs.link-ai.tech/platform/api, https://docs.link-ai.tech/api#/
4
- # Description: This file contains the code to run the gradio app for the movie generator.
5
- #
6
- #
7
- #
8
- # 参考链接: https://zhuanlan.zhihu.com/p/684798694
9
- #
10
- #
11
- ####################################################################################################
12
-
13
- import gradio as gr
14
- import fire
15
- from gradio_client import Client, file
16
- import numpy as np
17
- from langchain.chat_models import ChatOpenAI
18
- from langchain.schema import AIMessage, HumanMessage
19
-
20
- from openai import OpenAI
21
- import os
22
- import moviepy.editor as mppyth
23
- from moviepy.editor import *
24
- # from movie_generator.agi.suno.suno import Suno
25
- import requests
26
-
27
-
28
- import ollama
29
- from ollama import chat
30
- from ollama import ChatResponse
31
-
32
- # ollama.pull("deepseek-r1:1.5b")
33
- # print( 'ollama result:',ollama.list())
34
- # response: ChatResponse = chat(model='deepseek-r1:1.5b', messages=[
35
- # {
36
- # 'role': 'user',
37
- # 'content': 'Why is the sky blue?',
38
- # },
39
- # ])
40
- # print(response['message']['content'])
41
- # # or access fields directly from the response object
42
- # print(response.message.content)
43
-
44
- def call_LLM(inputs, prompts= '你是一个时尚服装行业的专家, 请回答下面问题:', model_version = 'Qwen'):
45
- inputs = prompts + ' ' + inputs
46
- if model_version=="Qwen":
47
- from openai import OpenAI
48
-
49
- model_id = 'Qwen/Qwen2.5-3B-Instruct-GGUF'
50
-
51
- client = OpenAI(
52
- base_url='https://ms-fc-2ea3820b-8c19.api-inference.modelscope.cn/v1',
53
- api_key='e37bfdad-0f6a-46c2-a7bf-f9dc365967e3'
54
- )
55
-
56
- response=client.chat.completions.create(
57
- model=model_id,
58
- messages=[{"role":"user", "content":inputs}],
59
- stream=True
60
- )
61
-
62
- res= []
63
- for chunk in response:
64
- # print(chunk.choices[0].delta.content, end='', flush=True)
65
- res.append(chunk.choices[0].delta.content)
66
- return "".join(res)
67
- elif model_version in ['deepseek-r1:1.5b', 'llama3.2:latest']:
68
-
69
- # model= 'deepseek-r1:1.5b'
70
- # model = 'llama3.2:latest'
71
- response: ChatResponse = chat(model= model_version, messages=[
72
- {
73
- 'role': 'user',
74
- 'content': prompts + " " + inputs,
75
- },
76
- ])
77
- return response['message']['content']
78
- else:
79
- return "LLM version is not supported yet."
80
- import os
81
- class GradioApp:
82
- def __init__(self,config=None):
83
- #config with info of
84
- # model version
85
- # prompts
86
- #others
87
- self.config=config
88
- # self.image_dir = "/mnt/d/workspace/projects/Project_TextImage_Generator/examples"
89
- self.image_dir = "../examples"
90
- self.model_dir = os.path.join(self.image_dir, "models")
91
- self.clothes_dir = os.path.join(self.image_dir, "clothes")
92
- self.reference_dir = os.path.join(self.image_dir, "references")
93
- self.model_files = [os.path.join(self.model_dir, f) for f in os.listdir(self.model_dir)]
94
- self.clothes_files = [os.path.join(self.clothes_dir, f) for f in os.listdir(self.clothes_dir)]
95
- self.reference_files = [os.path.join(self.reference_dir, f) for f in os.listdir(self.reference_dir)]
96
- pass
97
-
98
-
99
- def test_image_func(self, input_image, filter_mode='sepia'):
100
- def filter_image(input_image, filter_mode='sepia'):
101
- def sepia(input_img):
102
- sepia_filter = np.array([
103
- [0.393, 0.769, 0.189],
104
- [0.349, 0.686, 0.168],
105
- [0.272, 0.534, 0.131]
106
- ])
107
- sepia_img = input_img.dot(sepia_filter.T)
108
- sepia_img /= sepia_img.max()
109
- return sepia_img
110
- def grayscale(input_img):
111
- input_img = np.mean(input_img, axis=2) / np.max(input_img)
112
- return input_img
113
- if filter_mode == 'sepia':
114
- return sepia(input_image)
115
- elif filter_mode == 'grayscale':
116
- return grayscale(input_image)
117
- else:
118
- return input_image
119
- res = f"Got image from image input: {input_image}"
120
- filtered_image = filter_image(input_image, filter_mode)
121
- return res, filtered_image
122
-
123
- def dress_up_func(self, model_images, cloths_images, prompts, similarity):
124
- # 请求GPT response
125
- return "dress_up_func output",[(model_images, "模特"), (cloths_images, "衣服")]*5
126
-
127
- def update_model_func(self, model_images, cloths_images, prompts, similarity):
128
- # 请求GPT response
129
- return "update_model_func output", [(model_images, "模特"), (cloths_images, "衣服")]*5
130
-
131
- def image_module(self, mode='dress_up', title='image_module', desc=''):
132
- if mode == 'dress_up':
133
- # 模特试衣
134
- func = self.dress_up_func
135
- elif mode == 'update_model':
136
- # 更新模特
137
- func = self.update_model_func
138
- else:
139
- func = self.dress_up_func
140
- examples = []
141
- for i, (c, m) in enumerate( zip(self.clothes_files, self.model_files) ):
142
- examples.append([c, m, 'sepia', 0.6] )
143
- comp = gr.Interface(
144
- fn= func,
145
- inputs=[gr.Image(label='衣服', scale=1, height=300),
146
- gr.Image(label='模特',scale=1, height=300),
147
- gr.Dropdown(['sepia', 'grayscale']),
148
- gr.Slider(0, 10, value=5, label="相似度控制", info="similarity between 2 and 20")],
149
- outputs=[gr.Textbox(label="文本输出"),
150
- gr.Gallery(label='图片展示',height='auto',columns=3)
151
- ],
152
- title=title,
153
- description=desc,
154
- theme="huggingface",
155
- examples=examples,
156
- )
157
- return comp
158
-
159
- def image_module_v2(self, mode='dress_up', title='image_module', desc=''):
160
- def upload_file(files, current_files):
161
- file_paths = current_files + [file.name for file in files]
162
- return file_paths
163
-
164
- def gen_images(clothes_img, model_img):
165
- new_images = []
166
- #call LLM/SD here
167
- new_images.append(clothes_img)
168
- new_images.append(model_img)
169
- return new_images
170
-
171
- def clear_images():
172
- return []
173
- def slider_func(val):
174
- print("slider value: ", val)
175
-
176
-
177
- if mode == 'dress_up':
178
- # 模特试衣
179
- func = self.dress_up_func
180
- elif mode == 'update_model':
181
- # 更新模特
182
- func = self.update_model_func
183
- else:
184
- func = self.dress_up_func
185
-
186
- with gr.Blocks() as demo:
187
- # first row
188
- with gr.Row():
189
- # first col -> input column
190
- with gr.Column():
191
- model_image=gr.Image(label="模特图片",type='pil', height=None, width=None)
192
- clothes_image=gr.Image(label="衣服图片",type='pil', height=None, width=None)
193
- upload_button = gr.UploadButton("选择图片上传 (Upload Photos)", file_types=["image"], file_count="multiple")
194
- generate_img_button = gr.Button("生成图片")
195
- slider = gr.Slider(0, 10, value=5, label="相似度控制", info="similarity between 2 and 20")
196
- clear_button = gr.Button("清空图片 (Clear Photos)")
197
-
198
- # analyze_button = gr.Button("显示图片信息 (Show Image Info)")
199
- input_image_gallery = gr.Gallery(type='pil', label='输入图片列表 (Photos)', height=250, columns=4, visible=True)
200
- # second col-> output column
201
- with gr.Column():
202
- image_gallery = gr.Gallery(type='pil', label='图片列表 (Photos)', height=250, columns=4, visible=True)
203
- # user_images = gr.State([])
204
- # upload_button.upload(upload_file, inputs=[upload_button, user_images], outputs=image_gallery)
205
- slider.input(fn=slider_func)
206
- generate_img_button.click(gen_images,inputs=[clothes_image, model_image], outputs= image_gallery)
207
- clear_button.click(fn=clear_images, inputs=None, outputs=image_gallery)
208
- # analyze_button.click(get_image_info, inputs=image_gallery, outputs=analysis_output)
209
- return demo
210
-
211
- def gen_text(self,inputs, LLM_version='Qwen'):
212
- # 设置前置prompt做限制
213
- prompts = "你是一个时尚服装行业的专家, 请回答下面问题,只罗列答案不要返回多余的词:"
214
- # model= 'deepseek-r1:1.5b'
215
- # return call_LLM(inputs,prompts, model_version='llama3.2:latest')
216
- return call_LLM(inputs,prompts, model_version=LLM_version)
217
-
218
- def text_module(self, title='文本生成', desc="AI生成关键词"):
219
- comp = gr.Interface(
220
- fn= self.gen_text,
221
- inputs=[gr.Textbox(label="文本输入"), gr.Dropdown(['deepseek-r1:1.5b', 'llama3.2:latest','Qwen'], label='模型选择')],
222
- outputs=[gr.Textbox(label="结果输出")],
223
- title=title,
224
- description=desc,
225
- theme="huggingface",
226
- examples=[
227
- ["列出2024年最受欢迎的10个衣服品牌","llama3.2:latest"],
228
- ["哪些款式的女装比较潮流, 请列出10个女装品类","Qwen"],
229
- ["随机生成10个衣服类目并列出来","Qwen"]],
230
- cache_examples=True,
231
- )
232
- return comp
233
-
234
- def generate_interface(self,):
235
- tab_interface_ls = {}
236
- # module 1: 生词
237
- tab_interface_ls['AI生词'] = self.text_module()
238
-
239
- # module 2: 服装上身
240
- tab_interface_ls['服装搭配'] = self.image_module('dress_up', title="服装搭配")
241
-
242
- # module 3: 换模特
243
- tab_interface_ls['更换模特'] = self.image_module('update_model', title="更换模特")
244
-
245
- comp = gr.TabbedInterface(
246
- list(tab_interface_ls.values()), list(tab_interface_ls.keys())
247
- )
248
- return comp
249
-
250
- def main():
251
- print(f"Runing Gradio APP")
252
- component = GradioApp()
253
- component.generate_interface().launch(share=True)
254
-
255
-
256
- if __name__ == "__main__":
257
- main()
258
-
259
-
260
-
261
-
262
- # class GradioUnitTest():
263
- # def __init__(self):
264
- # api_key = "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"
265
- # # "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"
266
- # os.environ["OPENAI_API_KEY"] = api_key
267
- # self.llm_model = ChatOpenAI(temperature=0.5, model="gpt-3.5-turbo")
268
- # # self.llm_model= None
269
- # self.client = OpenAI(api_key=api_key)
270
- # cur_path =os.getcwd()
271
- # root_path = '/'.join(cur_path.split("/")[:-2])
272
-
273
- # suno_result_path = os.path.join(root_path,'examples','suno_musics')
274
- # # self.suno = Suno(result_path=suno_result_path)
275
- # self.suno= None
276
- # pass
277
-
278
- # def test_text(self, input_text, mode = 'count'):
279
- # def process_test( _text, mode = 'count'):
280
- # def count_words(text):
281
- # words = text.split(" ")
282
- # res_dict = {}
283
- # for word in words:
284
- # if word in res_dict:
285
- # res_dict[word] += 1
286
- # else:
287
- # res_dict[word] = 1
288
- # res = "\n".join([f"word: {key}, count: {value}" for key, value in res_dict.items()])
289
- # return res
290
-
291
- # def reverse_text(text):
292
- # return text[::-1]
293
-
294
- # if mode == 'count':
295
- # return count_words(_text)
296
- # return reverse_text(_text)
297
-
298
- # res = f"Got text from textbox: {input_text}"
299
- # return res, process_test(input_text, mode)
300
- # # return res, count_words(input_text)
301
-
302
- # def test_image(self, input_image, filter_mode='sepia'):
303
- # def filter_image(input_image, filter_mode='sepia'):
304
- # def sepia(input_img):
305
- # sepia_filter = np.array([
306
- # [0.393, 0.769, 0.189],
307
- # [0.349, 0.686, 0.168],
308
- # [0.272, 0.534, 0.131]
309
- # ])
310
- # sepia_img = input_img.dot(sepia_filter.T)
311
- # sepia_img /= sepia_img.max()
312
- # return sepia_img
313
- # def grayscale(input_img):
314
- # input_img = np.mean(input_img, axis=2) / np.max(input_img)
315
- # return input_img
316
-
317
- # if filter_mode == 'sepia':
318
- # return sepia(input_image)
319
- # elif filter_mode == 'grayscale':
320
- # return grayscale(input_image)
321
- # else:
322
- # return input_image
323
- # res = f"Got image from image input: {input_image}"
324
- # filtered_image = filter_image(input_image, filter_mode)
325
- # return res, filtered_image
326
-
327
- # def test_audio(self, input_audio, filter_mode='echo', prompt='', checkbox_ls=[]):
328
- # def process_audio(input_audio, filter_mode='echo'):
329
- # print("input_audio shape: ", input_audio[1].shape, input_audio)
330
- # def echo(input_audio):
331
- # aud = np.concatenate([input_audio[1], input_audio[1]], axis=0)
332
- # return (input_audio[0], aud)
333
- # def reverse(input_audio):
334
- # return (input_audio[0], input_audio[1][::-1])
335
-
336
- # if filter_mode == 'echo':
337
- # res_audio = echo(input_audio)
338
- # elif filter_mode == 'reverse':
339
- # res_audio = reverse(input_audio)
340
- # else:
341
- # res_audio = input_audio
342
- # return res_audio
343
- # print("checkbox_ls: ", checkbox_ls)
344
- # res = f"Got audio from audio input: {input_audio}"
345
- # wait_audio = 'wait_audio' in checkbox_ls
346
- # make_instrumental = 'make_instrumental' in checkbox_ls
347
- # if checkbox_ls != []:
348
- # print('checlbox_ls: ', checkbox_ls)
349
- # generated_audio_path=''
350
- # if prompt != '':
351
- # music_paths = self.test_music_generation(prompt, make_instrumental, wait_audio)
352
- # generated_audio_path = '\n'.join(music_paths)
353
- # res = f"Got audio from suno: {generated_audio_path}"
354
- # processed_audio = process_audio(input_audio, filter_mode)
355
- # return res, processed_audio, generated_audio_path
356
-
357
- # def test_video(self, input_video, filter_mode='flip'):
358
- # def process_video(input_video, filter_mode='flip'):
359
- # print("input_video data: ", input_video)
360
-
361
- # def clip(input_video):
362
- # clip1 = VideoFileClip(input_video)
363
- # clip2 = VideoFileClip(input_video).subclip(2,3)
364
- # clip3 = VideoFileClip(input_video)
365
- # final_clip = concatenate_videoclips([clip1,clip2,clip3])
366
- # output_video = "final_clip.mp4"
367
- # final_clip.write_videofile(output_video)
368
- # return output_video
369
- # def flip(input_video):
370
- # return np.flip(input_video, axis=1)
371
- # def rotate(input_video):
372
- # return np.rot90(input_video)
373
- # if filter_mode == 'clip':
374
- # return clip(input_video)
375
- # elif filter_mode == 'flip':
376
- # return flip(input_video)
377
- # elif filter_mode == 'rotate':
378
- # return rotate(input_video)
379
- # else:
380
- # return input_video
381
- # res = f"Got video from video input: {input_video}"
382
- # processed_video = process_video(input_video, filter_mode)
383
- # return res, processed_video
384
-
385
- # def test_chatbot(self, input_text, history):
386
- # history_langchain_format =[]
387
- # for human, ai in history:
388
- # history_langchain_format.append(HumanMessage(human))
389
- # history_langchain_format.append(AIMessage(ai))
390
- # history_langchain_format.append(content=input_text)
391
- # llm_response = self.llm_model(history_langchain_format)
392
- # return llm_response.content
393
-
394
- # def predict(self, message, history):
395
- # history_openai_format = []
396
- # for human, assistant in history:
397
- # history_openai_format.append({"role": "user", "content": human })
398
- # history_openai_format.append({"role": "assistant", "content":assistant})
399
- # history_openai_format.append({"role": "user", "content": message})
400
-
401
- # response = self.client.chat.completions.create(model='gpt-3.5-turbo',
402
- # messages= history_openai_format,
403
- # temperature=1.0,
404
- # stream=True)
405
-
406
- # partial_message = ""
407
- # for chunk in response:
408
- # if chunk.choices[0].delta.content is not None:
409
- # partial_message = partial_message + chunk.choices[0].delta.content
410
- # yield partial_message
411
-
412
- # def predict_v2(self, message, history):
413
-
414
- # url = "https://api.link-ai.chat/v1/chat/completions"
415
- # headers = {
416
- # 'Authorization': 'Bearer Link_USN4Vru40ciqYkdpeWywmOOIOPHGLYm8EuAGm0xE0b',
417
- # 'Content-Type': 'application/json'
418
- # }
419
- # history_openai_format = []
420
- # for human, assistant in history:
421
- # history_openai_format.append({"role": "user", "content": human })
422
- # history_openai_format.append({"role": "assistant", "content":assistant})
423
- # history_openai_format.append({"role": "user", "content": message})
424
-
425
-
426
- # data = {
427
- # "app_code": "default",
428
- # "messages": history_openai_format,
429
- # }
430
-
431
- # response = requests.post(url, headers=headers, json=data).json()
432
- # partial_message = ""
433
- # for chunk in response['choices']:
434
- # if chunk['message']["content"] is not None:
435
- # partial_message = partial_message + chunk['message']["content"]
436
- # yield partial_message
437
-
438
-
439
- # def predict_v3(self, message, history):
440
-
441
- # url = "https://api.link-ai.chat/v1/chat/completions"
442
- # headers = {
443
- # 'Authorization': 'Bearer Link_USN4Vru40ciqYkdpeWywmOOIOPHGLYm8EuAGm0xE0b',
444
- # 'Content-Type': 'application/json'
445
- # }
446
- # history_openai_format = []
447
- # for human, assistant in history:
448
- # history_openai_format.append({"role": "user", "content": human })
449
- # history_openai_format.append({"role": "assistant", "content":assistant})
450
- # history_openai_format.append({"role": "user", "content": message})
451
-
452
-
453
- # data = {
454
- # "app_code": "default",
455
- # "messages": history_openai_format,
456
- # }
457
-
458
- # response = requests.post(url, headers=headers, json=data).json()
459
- # partial_message = ""
460
- # for chunk in response['choices']:
461
- # if chunk['message']["content"] is not None:
462
- # partial_message = partial_message + chunk['message']["content"]
463
- # yield partial_message
464
-
465
- # def test_music_generation(self, prompt, make_instrumental=False, wait_audio=False):
466
- # request = {
467
- # "prompt": prompt,
468
- # "make_instrumental": make_instrumental,
469
- # "wait_audio": wait_audio
470
- # }
471
- # # music_ls = self.suno.generate_music(request)
472
- # music_ls = []
473
- # return music_ls
474
-
475
- # def run_test(self, mode='text'):
476
- # tab_interface_ls = {}
477
- # if mode == 'text' or mode == 'mix':
478
- # comp = gr.Interface(
479
- # fn= self.test_text,
480
- # inputs=['textbox', gr.Dropdown(['count', 'reverse'])],
481
- # outputs=["textbox", "textbox"],
482
- # title="test text module",
483
- # description="test text.",
484
- # theme="huggingface",
485
- # examples=[
486
- # ["A group of friends go on a road trip to find a hidden treasure."],
487
- # ["A scientist discovers a way to travel through time."],
488
- # ["A group of survivors try to escape a zombie apocalypse."],
489
- # ],
490
- # )
491
- # tab_interface_ls['Text Ops'] = comp
492
- # if mode == 'text':
493
- # return comp
494
- # if mode == 'image' or mode == 'mix':
495
- # # https://www.gradio.app/guides/the-interface-class
496
- # comp = gr.Interface(
497
- # fn= self.test_image,
498
- # inputs=['image', gr.Dropdown(['sepia', 'grayscale'])],
499
- # outputs=["textbox",'image'],
500
- # title="test image preprocess Module",
501
- # description="test text.",
502
- # theme="huggingface",
503
- # examples=[
504
- # ["/mnt/c/Users/wwk/Pictures/OIP.jpg", "sepia"],
505
- # ],
506
- # )
507
- # tab_interface_ls['Image Ops'] = comp
508
- # if mode == 'image':
509
- # return comp
510
-
511
- # if mode == 'audio' or mode == 'mix':
512
- # comp = gr.Interface(
513
- # fn= self.test_audio,
514
- # inputs=['audio', gr.Dropdown(['echo', 'reverse']), 'textbox', gr.CheckboxGroup([ 'make_instrumental' ,'wait_audio'], label="Suno options", info="make_instrumental<bool>, wait_audio:<bool>") ],
515
- # outputs=["textbox", 'audio'],
516
- # title="test audio preprocess Module",
517
- # description="test audio.",
518
- # theme="huggingface",
519
- # examples=[
520
- # ["/mnt/d/workspace/projects/movie_generator/examples/audio/两只老虎,两只老虎-神秘-欢快-v2.mp3", "echo"],
521
- # ["/mnt/d/workspace/projects/movie_generator/examples/audio/两只老虎,两只老虎-神秘-欢快-v2.mp3", "reverse"],
522
- # ],
523
- # )
524
- # tab_interface_ls['Audio Ops'] = comp
525
- # if mode == 'audio':
526
- # return comp
527
-
528
- # if mode == 'video' or mode == 'mix':
529
- # comp = gr.Interface(
530
- # fn= self.test_video,
531
- # inputs= [ 'video', gr.Dropdown(['clip', 'rotate'])],
532
- # outputs=["textbox", 'video'],
533
- # title="test video preprocess Module",
534
- # description="test video.",
535
- # theme="huggingface",
536
- # examples=[
537
- # ["/mnt/d/workspace/projects/movie_generator/examples/video/2月12日.mp4", "clip"],
538
- # ],
539
- # )
540
- # tab_interface_ls['Video Ops'] = comp
541
- # if mode == 'video':
542
- # return comp
543
-
544
- # if mode == 'chat' or mode == 'mix':
545
- # # https://www.gradio.app/guides/creating-a-custom-chatbot-with-blocks
546
- # # comp = gr.ChatInterface(self.test_chatbot)
547
- # comp = gr.ChatInterface(self.predict_v2)
548
- # tab_interface_ls['ChatBot'] = comp
549
- # if mode == 'chat':
550
- # return comp
551
- # if mode == 'mix':
552
- # # mix mode, use radio button to select the mode
553
- # comp = gr.TabbedInterface(
554
- # list(tab_interface_ls.values()), list(tab_interface_ls.keys())
555
- # )
556
- # return comp
557
- # else:
558
- # def flip_text(x):
559
- # return x[::-1]
560
- # def flip_image(x):
561
- # return np.fliplr(x)
562
- # with gr.Blocks() as comp:
563
- # gr.Markdown("Flip text or image files using this demo.")
564
- # with gr.Tab("Flip Text"):
565
- # text_input = gr.Textbox()
566
- # text_output = gr.Textbox()
567
- # text_button = gr.Button("Flip")
568
- # with gr.Tab("Flip Image"):
569
- # with gr.Row():
570
- # image_input = gr.Image()
571
- # image_output = gr.Image()
572
- # image_button = gr.Button("Flip")
573
-
574
- # with gr.Accordion("Open for More!", open=False):
575
- # gr.Markdown("Look at me...")
576
- # temp_slider = gr.Slider(
577
- # minimum=0.0,
578
- # maximum=1.0,
579
- # value=0.1,
580
- # step=0.1,
581
- # interactive=True,
582
- # label="Slide me",
583
- # )
584
- # temp_slider.change(lambda x: x, [temp_slider])
585
-
586
- # text_button.click(flip_text, inputs=text_input, outputs=text_output)
587
- # image_button.click(flip_image, inputs=image_input, outputs=image_output)
588
- # return comp
 
1
+ import gradio as gr
2
+
3
+ with gr.Blocks(fill_height=True) as demo:
4
+ with gr.Sidebar():
5
+ gr.Markdown("# Inference Provider")
6
+ gr.Markdown("This Space showcases the black-forest-labs/FLUX.1-dev model, served by the nebius API. Sign in with your Hugging Face account to use this API.")
7
+ button = gr.LoginButton("Sign in")
8
+ gr.load("models/black-forest-labs/FLUX.1-dev", accept_token=button, provider="nebius")
9
+
10
+ demo.launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
appv2.py ADDED
@@ -0,0 +1,588 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Dependencies: gradio, fire, langchain, openai, numpy, ffmpeg, moviepy
2
+ # API Reference: https://www.gradio.app/docs/,
3
+ # https://github.com/zhayujie/chatgpt-on-wechat, https://docs.link-ai.tech/platform/api, https://docs.link-ai.tech/api#/
4
+ # Description: This file contains the code to run the gradio app for the movie generator.
5
+ #
6
+ #
7
+ #
8
+ # 参考链接: https://zhuanlan.zhihu.com/p/684798694
9
+ #
10
+ #
11
+ ####################################################################################################
12
+
13
+ import gradio as gr
14
+ #import fire
15
+ from gradio_client import Client, file
16
+ import numpy as np
17
+ from langchain.chat_models import ChatOpenAI
18
+ from langchain.schema import AIMessage, HumanMessage
19
+
20
+ from openai import OpenAI
21
+ import os
22
+ import moviepy.editor as mppyth
23
+ from moviepy.editor import *
24
+ # from movie_generator.agi.suno.suno import Suno
25
+ import requests
26
+
27
+
28
+ import ollama
29
+ from ollama import chat
30
+ from ollama import ChatResponse
31
+
32
+ # ollama.pull("deepseek-r1:1.5b")
33
+ # print( 'ollama result:',ollama.list())
34
+ # response: ChatResponse = chat(model='deepseek-r1:1.5b', messages=[
35
+ # {
36
+ # 'role': 'user',
37
+ # 'content': 'Why is the sky blue?',
38
+ # },
39
+ # ])
40
+ # print(response['message']['content'])
41
+ # # or access fields directly from the response object
42
+ # print(response.message.content)
43
+
44
+ def call_LLM(inputs, prompts= '你是一个时尚服装行业的专家, 请回答下面问题:', model_version = 'Qwen'):
45
+ inputs = prompts + ' ' + inputs
46
+ if model_version=="Qwen":
47
+ from openai import OpenAI
48
+
49
+ model_id = 'Qwen/Qwen2.5-3B-Instruct-GGUF'
50
+
51
+ client = OpenAI(
52
+ base_url='https://ms-fc-2ea3820b-8c19.api-inference.modelscope.cn/v1',
53
+ api_key='e37bfdad-0f6a-46c2-a7bf-f9dc365967e3'
54
+ )
55
+
56
+ response=client.chat.completions.create(
57
+ model=model_id,
58
+ messages=[{"role":"user", "content":inputs}],
59
+ stream=True
60
+ )
61
+
62
+ res= []
63
+ for chunk in response:
64
+ # print(chunk.choices[0].delta.content, end='', flush=True)
65
+ res.append(chunk.choices[0].delta.content)
66
+ return "".join(res)
67
+ elif model_version in ['deepseek-r1:1.5b', 'llama3.2:latest']:
68
+
69
+ # model= 'deepseek-r1:1.5b'
70
+ # model = 'llama3.2:latest'
71
+ response: ChatResponse = chat(model= model_version, messages=[
72
+ {
73
+ 'role': 'user',
74
+ 'content': prompts + " " + inputs,
75
+ },
76
+ ])
77
+ return response['message']['content']
78
+ else:
79
+ return "LLM version is not supported yet."
80
+ import os
81
+ class GradioApp:
82
+ def __init__(self,config=None):
83
+ #config with info of
84
+ # model version
85
+ # prompts
86
+ #others
87
+ self.config=config
88
+ # self.image_dir = "/mnt/d/workspace/projects/Project_TextImage_Generator/examples"
89
+ self.image_dir = "../examples"
90
+ self.model_dir = os.path.join(self.image_dir, "models")
91
+ self.clothes_dir = os.path.join(self.image_dir, "clothes")
92
+ self.reference_dir = os.path.join(self.image_dir, "references")
93
+ self.model_files = [os.path.join(self.model_dir, f) for f in os.listdir(self.model_dir)]
94
+ self.clothes_files = [os.path.join(self.clothes_dir, f) for f in os.listdir(self.clothes_dir)]
95
+ self.reference_files = [os.path.join(self.reference_dir, f) for f in os.listdir(self.reference_dir)]
96
+ pass
97
+
98
+
99
+ def test_image_func(self, input_image, filter_mode='sepia'):
100
+ def filter_image(input_image, filter_mode='sepia'):
101
+ def sepia(input_img):
102
+ sepia_filter = np.array([
103
+ [0.393, 0.769, 0.189],
104
+ [0.349, 0.686, 0.168],
105
+ [0.272, 0.534, 0.131]
106
+ ])
107
+ sepia_img = input_img.dot(sepia_filter.T)
108
+ sepia_img /= sepia_img.max()
109
+ return sepia_img
110
+ def grayscale(input_img):
111
+ input_img = np.mean(input_img, axis=2) / np.max(input_img)
112
+ return input_img
113
+ if filter_mode == 'sepia':
114
+ return sepia(input_image)
115
+ elif filter_mode == 'grayscale':
116
+ return grayscale(input_image)
117
+ else:
118
+ return input_image
119
+ res = f"Got image from image input: {input_image}"
120
+ filtered_image = filter_image(input_image, filter_mode)
121
+ return res, filtered_image
122
+
123
+ def dress_up_func(self, model_images, cloths_images, prompts, similarity):
124
+ # 请求GPT response
125
+ return "dress_up_func output",[(model_images, "模特"), (cloths_images, "衣服")]*5
126
+
127
+ def update_model_func(self, model_images, cloths_images, prompts, similarity):
128
+ # 请求GPT response
129
+ return "update_model_func output", [(model_images, "模特"), (cloths_images, "衣服")]*5
130
+
131
+ def image_module(self, mode='dress_up', title='image_module', desc=''):
132
+ if mode == 'dress_up':
133
+ # 模特试衣
134
+ func = self.dress_up_func
135
+ elif mode == 'update_model':
136
+ # 更新模特
137
+ func = self.update_model_func
138
+ else:
139
+ func = self.dress_up_func
140
+ examples = []
141
+ for i, (c, m) in enumerate( zip(self.clothes_files, self.model_files) ):
142
+ examples.append([c, m, 'sepia', 0.6] )
143
+ comp = gr.Interface(
144
+ fn= func,
145
+ inputs=[gr.Image(label='衣服', scale=1, height=300),
146
+ gr.Image(label='模特',scale=1, height=300),
147
+ gr.Dropdown(['sepia', 'grayscale']),
148
+ gr.Slider(0, 10, value=5, label="相似度控制", info="similarity between 2 and 20")],
149
+ outputs=[gr.Textbox(label="文本输出"),
150
+ gr.Gallery(label='图片展示',height='auto',columns=3)
151
+ ],
152
+ title=title,
153
+ description=desc,
154
+ theme="huggingface",
155
+ examples=examples,
156
+ )
157
+ return comp
158
+
159
+ def image_module_v2(self, mode='dress_up', title='image_module', desc=''):
160
+ def upload_file(files, current_files):
161
+ file_paths = current_files + [file.name for file in files]
162
+ return file_paths
163
+
164
+ def gen_images(clothes_img, model_img):
165
+ new_images = []
166
+ #call LLM/SD here
167
+ new_images.append(clothes_img)
168
+ new_images.append(model_img)
169
+ return new_images
170
+
171
+ def clear_images():
172
+ return []
173
+ def slider_func(val):
174
+ print("slider value: ", val)
175
+
176
+
177
+ if mode == 'dress_up':
178
+ # 模特试衣
179
+ func = self.dress_up_func
180
+ elif mode == 'update_model':
181
+ # 更新模特
182
+ func = self.update_model_func
183
+ else:
184
+ func = self.dress_up_func
185
+
186
+ with gr.Blocks() as demo:
187
+ # first row
188
+ with gr.Row():
189
+ # first col -> input column
190
+ with gr.Column():
191
+ model_image=gr.Image(label="模特图片",type='pil', height=None, width=None)
192
+ clothes_image=gr.Image(label="衣服图片",type='pil', height=None, width=None)
193
+ upload_button = gr.UploadButton("选择图片上传 (Upload Photos)", file_types=["image"], file_count="multiple")
194
+ generate_img_button = gr.Button("生成图片")
195
+ slider = gr.Slider(0, 10, value=5, label="相似度控制", info="similarity between 2 and 20")
196
+ clear_button = gr.Button("清空图片 (Clear Photos)")
197
+
198
+ # analyze_button = gr.Button("显示图片信息 (Show Image Info)")
199
+ input_image_gallery = gr.Gallery(type='pil', label='输入图片列表 (Photos)', height=250, columns=4, visible=True)
200
+ # second col-> output column
201
+ with gr.Column():
202
+ image_gallery = gr.Gallery(type='pil', label='图片列表 (Photos)', height=250, columns=4, visible=True)
203
+ # user_images = gr.State([])
204
+ # upload_button.upload(upload_file, inputs=[upload_button, user_images], outputs=image_gallery)
205
+ slider.input(fn=slider_func)
206
+ generate_img_button.click(gen_images,inputs=[clothes_image, model_image], outputs= image_gallery)
207
+ clear_button.click(fn=clear_images, inputs=None, outputs=image_gallery)
208
+ # analyze_button.click(get_image_info, inputs=image_gallery, outputs=analysis_output)
209
+ return demo
210
+
211
+ def gen_text(self,inputs, LLM_version='Qwen'):
212
+ # 设置前置prompt做限制
213
+ prompts = "你是一个时尚服装行业的专家, 请回答下面问题,只罗列答案不要返回多余的词:"
214
+ # model= 'deepseek-r1:1.5b'
215
+ # return call_LLM(inputs,prompts, model_version='llama3.2:latest')
216
+ return call_LLM(inputs,prompts, model_version=LLM_version)
217
+
218
+ def text_module(self, title='文本生成', desc="AI生成关键词"):
219
+ comp = gr.Interface(
220
+ fn= self.gen_text,
221
+ inputs=[gr.Textbox(label="文本输入"), gr.Dropdown(['deepseek-r1:1.5b', 'llama3.2:latest','Qwen'], label='模型选择')],
222
+ outputs=[gr.Textbox(label="结果输出")],
223
+ title=title,
224
+ description=desc,
225
+ theme="huggingface",
226
+ examples=[
227
+ ["列出2024年最受欢迎的10个衣服品牌","llama3.2:latest"],
228
+ ["哪些款式的女装比较潮流, 请列出10个女装品类","Qwen"],
229
+ ["随机生成10个衣服类目并列出来","Qwen"]],
230
+ cache_examples=True,
231
+ )
232
+ return comp
233
+
234
+ def generate_interface(self,):
235
+ tab_interface_ls = {}
236
+ # module 1: 生词
237
+ tab_interface_ls['AI生词'] = self.text_module()
238
+
239
+ # module 2: 服装上身
240
+ tab_interface_ls['服装搭配'] = self.image_module('dress_up', title="服装搭配")
241
+
242
+ # module 3: 换模特
243
+ tab_interface_ls['更换模特'] = self.image_module('update_model', title="更换模特")
244
+
245
+ comp = gr.TabbedInterface(
246
+ list(tab_interface_ls.values()), list(tab_interface_ls.keys())
247
+ )
248
+ return comp
249
+
250
+ def main():
251
+ print(f"Runing Gradio APP")
252
+ component = GradioApp()
253
+ component.generate_interface().launch(share=True)
254
+
255
+
256
+ if __name__ == "__main__":
257
+ main()
258
+
259
+
260
+
261
+
262
+ # class GradioUnitTest():
263
+ # def __init__(self):
264
+ # api_key = "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"
265
+ # # "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"
266
+ # os.environ["OPENAI_API_KEY"] = api_key
267
+ # self.llm_model = ChatOpenAI(temperature=0.5, model="gpt-3.5-turbo")
268
+ # # self.llm_model= None
269
+ # self.client = OpenAI(api_key=api_key)
270
+ # cur_path =os.getcwd()
271
+ # root_path = '/'.join(cur_path.split("/")[:-2])
272
+
273
+ # suno_result_path = os.path.join(root_path,'examples','suno_musics')
274
+ # # self.suno = Suno(result_path=suno_result_path)
275
+ # self.suno= None
276
+ # pass
277
+
278
+ # def test_text(self, input_text, mode = 'count'):
279
+ # def process_test( _text, mode = 'count'):
280
+ # def count_words(text):
281
+ # words = text.split(" ")
282
+ # res_dict = {}
283
+ # for word in words:
284
+ # if word in res_dict:
285
+ # res_dict[word] += 1
286
+ # else:
287
+ # res_dict[word] = 1
288
+ # res = "\n".join([f"word: {key}, count: {value}" for key, value in res_dict.items()])
289
+ # return res
290
+
291
+ # def reverse_text(text):
292
+ # return text[::-1]
293
+
294
+ # if mode == 'count':
295
+ # return count_words(_text)
296
+ # return reverse_text(_text)
297
+
298
+ # res = f"Got text from textbox: {input_text}"
299
+ # return res, process_test(input_text, mode)
300
+ # # return res, count_words(input_text)
301
+
302
+ # def test_image(self, input_image, filter_mode='sepia'):
303
+ # def filter_image(input_image, filter_mode='sepia'):
304
+ # def sepia(input_img):
305
+ # sepia_filter = np.array([
306
+ # [0.393, 0.769, 0.189],
307
+ # [0.349, 0.686, 0.168],
308
+ # [0.272, 0.534, 0.131]
309
+ # ])
310
+ # sepia_img = input_img.dot(sepia_filter.T)
311
+ # sepia_img /= sepia_img.max()
312
+ # return sepia_img
313
+ # def grayscale(input_img):
314
+ # input_img = np.mean(input_img, axis=2) / np.max(input_img)
315
+ # return input_img
316
+
317
+ # if filter_mode == 'sepia':
318
+ # return sepia(input_image)
319
+ # elif filter_mode == 'grayscale':
320
+ # return grayscale(input_image)
321
+ # else:
322
+ # return input_image
323
+ # res = f"Got image from image input: {input_image}"
324
+ # filtered_image = filter_image(input_image, filter_mode)
325
+ # return res, filtered_image
326
+
327
+ # def test_audio(self, input_audio, filter_mode='echo', prompt='', checkbox_ls=[]):
328
+ # def process_audio(input_audio, filter_mode='echo'):
329
+ # print("input_audio shape: ", input_audio[1].shape, input_audio)
330
+ # def echo(input_audio):
331
+ # aud = np.concatenate([input_audio[1], input_audio[1]], axis=0)
332
+ # return (input_audio[0], aud)
333
+ # def reverse(input_audio):
334
+ # return (input_audio[0], input_audio[1][::-1])
335
+
336
+ # if filter_mode == 'echo':
337
+ # res_audio = echo(input_audio)
338
+ # elif filter_mode == 'reverse':
339
+ # res_audio = reverse(input_audio)
340
+ # else:
341
+ # res_audio = input_audio
342
+ # return res_audio
343
+ # print("checkbox_ls: ", checkbox_ls)
344
+ # res = f"Got audio from audio input: {input_audio}"
345
+ # wait_audio = 'wait_audio' in checkbox_ls
346
+ # make_instrumental = 'make_instrumental' in checkbox_ls
347
+ # if checkbox_ls != []:
348
+ # print('checlbox_ls: ', checkbox_ls)
349
+ # generated_audio_path=''
350
+ # if prompt != '':
351
+ # music_paths = self.test_music_generation(prompt, make_instrumental, wait_audio)
352
+ # generated_audio_path = '\n'.join(music_paths)
353
+ # res = f"Got audio from suno: {generated_audio_path}"
354
+ # processed_audio = process_audio(input_audio, filter_mode)
355
+ # return res, processed_audio, generated_audio_path
356
+
357
+ # def test_video(self, input_video, filter_mode='flip'):
358
+ # def process_video(input_video, filter_mode='flip'):
359
+ # print("input_video data: ", input_video)
360
+
361
+ # def clip(input_video):
362
+ # clip1 = VideoFileClip(input_video)
363
+ # clip2 = VideoFileClip(input_video).subclip(2,3)
364
+ # clip3 = VideoFileClip(input_video)
365
+ # final_clip = concatenate_videoclips([clip1,clip2,clip3])
366
+ # output_video = "final_clip.mp4"
367
+ # final_clip.write_videofile(output_video)
368
+ # return output_video
369
+ # def flip(input_video):
370
+ # return np.flip(input_video, axis=1)
371
+ # def rotate(input_video):
372
+ # return np.rot90(input_video)
373
+ # if filter_mode == 'clip':
374
+ # return clip(input_video)
375
+ # elif filter_mode == 'flip':
376
+ # return flip(input_video)
377
+ # elif filter_mode == 'rotate':
378
+ # return rotate(input_video)
379
+ # else:
380
+ # return input_video
381
+ # res = f"Got video from video input: {input_video}"
382
+ # processed_video = process_video(input_video, filter_mode)
383
+ # return res, processed_video
384
+
385
+ # def test_chatbot(self, input_text, history):
386
+ # history_langchain_format =[]
387
+ # for human, ai in history:
388
+ # history_langchain_format.append(HumanMessage(human))
389
+ # history_langchain_format.append(AIMessage(ai))
390
+ # history_langchain_format.append(content=input_text)
391
+ # llm_response = self.llm_model(history_langchain_format)
392
+ # return llm_response.content
393
+
394
+ # def predict(self, message, history):
395
+ # history_openai_format = []
396
+ # for human, assistant in history:
397
+ # history_openai_format.append({"role": "user", "content": human })
398
+ # history_openai_format.append({"role": "assistant", "content":assistant})
399
+ # history_openai_format.append({"role": "user", "content": message})
400
+
401
+ # response = self.client.chat.completions.create(model='gpt-3.5-turbo',
402
+ # messages= history_openai_format,
403
+ # temperature=1.0,
404
+ # stream=True)
405
+
406
+ # partial_message = ""
407
+ # for chunk in response:
408
+ # if chunk.choices[0].delta.content is not None:
409
+ # partial_message = partial_message + chunk.choices[0].delta.content
410
+ # yield partial_message
411
+
412
+ # def predict_v2(self, message, history):
413
+
414
+ # url = "https://api.link-ai.chat/v1/chat/completions"
415
+ # headers = {
416
+ # 'Authorization': 'Bearer Link_USN4Vru40ciqYkdpeWywmOOIOPHGLYm8EuAGm0xE0b',
417
+ # 'Content-Type': 'application/json'
418
+ # }
419
+ # history_openai_format = []
420
+ # for human, assistant in history:
421
+ # history_openai_format.append({"role": "user", "content": human })
422
+ # history_openai_format.append({"role": "assistant", "content":assistant})
423
+ # history_openai_format.append({"role": "user", "content": message})
424
+
425
+
426
+ # data = {
427
+ # "app_code": "default",
428
+ # "messages": history_openai_format,
429
+ # }
430
+
431
+ # response = requests.post(url, headers=headers, json=data).json()
432
+ # partial_message = ""
433
+ # for chunk in response['choices']:
434
+ # if chunk['message']["content"] is not None:
435
+ # partial_message = partial_message + chunk['message']["content"]
436
+ # yield partial_message
437
+
438
+
439
+ # def predict_v3(self, message, history):
440
+
441
+ # url = "https://api.link-ai.chat/v1/chat/completions"
442
+ # headers = {
443
+ # 'Authorization': 'Bearer Link_USN4Vru40ciqYkdpeWywmOOIOPHGLYm8EuAGm0xE0b',
444
+ # 'Content-Type': 'application/json'
445
+ # }
446
+ # history_openai_format = []
447
+ # for human, assistant in history:
448
+ # history_openai_format.append({"role": "user", "content": human })
449
+ # history_openai_format.append({"role": "assistant", "content":assistant})
450
+ # history_openai_format.append({"role": "user", "content": message})
451
+
452
+
453
+ # data = {
454
+ # "app_code": "default",
455
+ # "messages": history_openai_format,
456
+ # }
457
+
458
+ # response = requests.post(url, headers=headers, json=data).json()
459
+ # partial_message = ""
460
+ # for chunk in response['choices']:
461
+ # if chunk['message']["content"] is not None:
462
+ # partial_message = partial_message + chunk['message']["content"]
463
+ # yield partial_message
464
+
465
+ # def test_music_generation(self, prompt, make_instrumental=False, wait_audio=False):
466
+ # request = {
467
+ # "prompt": prompt,
468
+ # "make_instrumental": make_instrumental,
469
+ # "wait_audio": wait_audio
470
+ # }
471
+ # # music_ls = self.suno.generate_music(request)
472
+ # music_ls = []
473
+ # return music_ls
474
+
475
+ # def run_test(self, mode='text'):
476
+ # tab_interface_ls = {}
477
+ # if mode == 'text' or mode == 'mix':
478
+ # comp = gr.Interface(
479
+ # fn= self.test_text,
480
+ # inputs=['textbox', gr.Dropdown(['count', 'reverse'])],
481
+ # outputs=["textbox", "textbox"],
482
+ # title="test text module",
483
+ # description="test text.",
484
+ # theme="huggingface",
485
+ # examples=[
486
+ # ["A group of friends go on a road trip to find a hidden treasure."],
487
+ # ["A scientist discovers a way to travel through time."],
488
+ # ["A group of survivors try to escape a zombie apocalypse."],
489
+ # ],
490
+ # )
491
+ # tab_interface_ls['Text Ops'] = comp
492
+ # if mode == 'text':
493
+ # return comp
494
+ # if mode == 'image' or mode == 'mix':
495
+ # # https://www.gradio.app/guides/the-interface-class
496
+ # comp = gr.Interface(
497
+ # fn= self.test_image,
498
+ # inputs=['image', gr.Dropdown(['sepia', 'grayscale'])],
499
+ # outputs=["textbox",'image'],
500
+ # title="test image preprocess Module",
501
+ # description="test text.",
502
+ # theme="huggingface",
503
+ # examples=[
504
+ # ["/mnt/c/Users/wwk/Pictures/OIP.jpg", "sepia"],
505
+ # ],
506
+ # )
507
+ # tab_interface_ls['Image Ops'] = comp
508
+ # if mode == 'image':
509
+ # return comp
510
+
511
+ # if mode == 'audio' or mode == 'mix':
512
+ # comp = gr.Interface(
513
+ # fn= self.test_audio,
514
+ # inputs=['audio', gr.Dropdown(['echo', 'reverse']), 'textbox', gr.CheckboxGroup([ 'make_instrumental' ,'wait_audio'], label="Suno options", info="make_instrumental<bool>, wait_audio:<bool>") ],
515
+ # outputs=["textbox", 'audio'],
516
+ # title="test audio preprocess Module",
517
+ # description="test audio.",
518
+ # theme="huggingface",
519
+ # examples=[
520
+ # ["/mnt/d/workspace/projects/movie_generator/examples/audio/两只老虎,两只老虎-神秘-欢快-v2.mp3", "echo"],
521
+ # ["/mnt/d/workspace/projects/movie_generator/examples/audio/两只老虎,两只老虎-神秘-欢快-v2.mp3", "reverse"],
522
+ # ],
523
+ # )
524
+ # tab_interface_ls['Audio Ops'] = comp
525
+ # if mode == 'audio':
526
+ # return comp
527
+
528
+ # if mode == 'video' or mode == 'mix':
529
+ # comp = gr.Interface(
530
+ # fn= self.test_video,
531
+ # inputs= [ 'video', gr.Dropdown(['clip', 'rotate'])],
532
+ # outputs=["textbox", 'video'],
533
+ # title="test video preprocess Module",
534
+ # description="test video.",
535
+ # theme="huggingface",
536
+ # examples=[
537
+ # ["/mnt/d/workspace/projects/movie_generator/examples/video/2月12日.mp4", "clip"],
538
+ # ],
539
+ # )
540
+ # tab_interface_ls['Video Ops'] = comp
541
+ # if mode == 'video':
542
+ # return comp
543
+
544
+ # if mode == 'chat' or mode == 'mix':
545
+ # # https://www.gradio.app/guides/creating-a-custom-chatbot-with-blocks
546
+ # # comp = gr.ChatInterface(self.test_chatbot)
547
+ # comp = gr.ChatInterface(self.predict_v2)
548
+ # tab_interface_ls['ChatBot'] = comp
549
+ # if mode == 'chat':
550
+ # return comp
551
+ # if mode == 'mix':
552
+ # # mix mode, use radio button to select the mode
553
+ # comp = gr.TabbedInterface(
554
+ # list(tab_interface_ls.values()), list(tab_interface_ls.keys())
555
+ # )
556
+ # return comp
557
+ # else:
558
+ # def flip_text(x):
559
+ # return x[::-1]
560
+ # def flip_image(x):
561
+ # return np.fliplr(x)
562
+ # with gr.Blocks() as comp:
563
+ # gr.Markdown("Flip text or image files using this demo.")
564
+ # with gr.Tab("Flip Text"):
565
+ # text_input = gr.Textbox()
566
+ # text_output = gr.Textbox()
567
+ # text_button = gr.Button("Flip")
568
+ # with gr.Tab("Flip Image"):
569
+ # with gr.Row():
570
+ # image_input = gr.Image()
571
+ # image_output = gr.Image()
572
+ # image_button = gr.Button("Flip")
573
+
574
+ # with gr.Accordion("Open for More!", open=False):
575
+ # gr.Markdown("Look at me...")
576
+ # temp_slider = gr.Slider(
577
+ # minimum=0.0,
578
+ # maximum=1.0,
579
+ # value=0.1,
580
+ # step=0.1,
581
+ # interactive=True,
582
+ # label="Slide me",
583
+ # )
584
+ # temp_slider.change(lambda x: x, [temp_slider])
585
+
586
+ # text_button.click(flip_text, inputs=text_input, outputs=text_output)
587
+ # image_button.click(flip_image, inputs=image_input, outputs=image_output)
588
+ # return comp