upload files
Browse files
app.py
CHANGED
@@ -1,588 +1,10 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
#
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
####################################################################################################
|
12 |
-
|
13 |
-
import gradio as gr
|
14 |
-
import fire
|
15 |
-
from gradio_client import Client, file
|
16 |
-
import numpy as np
|
17 |
-
from langchain.chat_models import ChatOpenAI
|
18 |
-
from langchain.schema import AIMessage, HumanMessage
|
19 |
-
|
20 |
-
from openai import OpenAI
|
21 |
-
import os
|
22 |
-
import moviepy.editor as mppyth
|
23 |
-
from moviepy.editor import *
|
24 |
-
# from movie_generator.agi.suno.suno import Suno
|
25 |
-
import requests
|
26 |
-
|
27 |
-
|
28 |
-
import ollama
|
29 |
-
from ollama import chat
|
30 |
-
from ollama import ChatResponse
|
31 |
-
|
32 |
-
# ollama.pull("deepseek-r1:1.5b")
|
33 |
-
# print( 'ollama result:',ollama.list())
|
34 |
-
# response: ChatResponse = chat(model='deepseek-r1:1.5b', messages=[
|
35 |
-
# {
|
36 |
-
# 'role': 'user',
|
37 |
-
# 'content': 'Why is the sky blue?',
|
38 |
-
# },
|
39 |
-
# ])
|
40 |
-
# print(response['message']['content'])
|
41 |
-
# # or access fields directly from the response object
|
42 |
-
# print(response.message.content)
|
43 |
-
|
44 |
-
def call_LLM(inputs, prompts= '你是一个时尚服装行业的专家, 请回答下面问题:', model_version = 'Qwen'):
|
45 |
-
inputs = prompts + ' ' + inputs
|
46 |
-
if model_version=="Qwen":
|
47 |
-
from openai import OpenAI
|
48 |
-
|
49 |
-
model_id = 'Qwen/Qwen2.5-3B-Instruct-GGUF'
|
50 |
-
|
51 |
-
client = OpenAI(
|
52 |
-
base_url='https://ms-fc-2ea3820b-8c19.api-inference.modelscope.cn/v1',
|
53 |
-
api_key='e37bfdad-0f6a-46c2-a7bf-f9dc365967e3'
|
54 |
-
)
|
55 |
-
|
56 |
-
response=client.chat.completions.create(
|
57 |
-
model=model_id,
|
58 |
-
messages=[{"role":"user", "content":inputs}],
|
59 |
-
stream=True
|
60 |
-
)
|
61 |
-
|
62 |
-
res= []
|
63 |
-
for chunk in response:
|
64 |
-
# print(chunk.choices[0].delta.content, end='', flush=True)
|
65 |
-
res.append(chunk.choices[0].delta.content)
|
66 |
-
return "".join(res)
|
67 |
-
elif model_version in ['deepseek-r1:1.5b', 'llama3.2:latest']:
|
68 |
-
|
69 |
-
# model= 'deepseek-r1:1.5b'
|
70 |
-
# model = 'llama3.2:latest'
|
71 |
-
response: ChatResponse = chat(model= model_version, messages=[
|
72 |
-
{
|
73 |
-
'role': 'user',
|
74 |
-
'content': prompts + " " + inputs,
|
75 |
-
},
|
76 |
-
])
|
77 |
-
return response['message']['content']
|
78 |
-
else:
|
79 |
-
return "LLM version is not supported yet."
|
80 |
-
import os
|
81 |
-
class GradioApp:
|
82 |
-
def __init__(self,config=None):
|
83 |
-
#config with info of
|
84 |
-
# model version
|
85 |
-
# prompts
|
86 |
-
#others
|
87 |
-
self.config=config
|
88 |
-
# self.image_dir = "/mnt/d/workspace/projects/Project_TextImage_Generator/examples"
|
89 |
-
self.image_dir = "../examples"
|
90 |
-
self.model_dir = os.path.join(self.image_dir, "models")
|
91 |
-
self.clothes_dir = os.path.join(self.image_dir, "clothes")
|
92 |
-
self.reference_dir = os.path.join(self.image_dir, "references")
|
93 |
-
self.model_files = [os.path.join(self.model_dir, f) for f in os.listdir(self.model_dir)]
|
94 |
-
self.clothes_files = [os.path.join(self.clothes_dir, f) for f in os.listdir(self.clothes_dir)]
|
95 |
-
self.reference_files = [os.path.join(self.reference_dir, f) for f in os.listdir(self.reference_dir)]
|
96 |
-
pass
|
97 |
-
|
98 |
-
|
99 |
-
def test_image_func(self, input_image, filter_mode='sepia'):
|
100 |
-
def filter_image(input_image, filter_mode='sepia'):
|
101 |
-
def sepia(input_img):
|
102 |
-
sepia_filter = np.array([
|
103 |
-
[0.393, 0.769, 0.189],
|
104 |
-
[0.349, 0.686, 0.168],
|
105 |
-
[0.272, 0.534, 0.131]
|
106 |
-
])
|
107 |
-
sepia_img = input_img.dot(sepia_filter.T)
|
108 |
-
sepia_img /= sepia_img.max()
|
109 |
-
return sepia_img
|
110 |
-
def grayscale(input_img):
|
111 |
-
input_img = np.mean(input_img, axis=2) / np.max(input_img)
|
112 |
-
return input_img
|
113 |
-
if filter_mode == 'sepia':
|
114 |
-
return sepia(input_image)
|
115 |
-
elif filter_mode == 'grayscale':
|
116 |
-
return grayscale(input_image)
|
117 |
-
else:
|
118 |
-
return input_image
|
119 |
-
res = f"Got image from image input: {input_image}"
|
120 |
-
filtered_image = filter_image(input_image, filter_mode)
|
121 |
-
return res, filtered_image
|
122 |
-
|
123 |
-
def dress_up_func(self, model_images, cloths_images, prompts, similarity):
|
124 |
-
# 请求GPT response
|
125 |
-
return "dress_up_func output",[(model_images, "模特"), (cloths_images, "衣服")]*5
|
126 |
-
|
127 |
-
def update_model_func(self, model_images, cloths_images, prompts, similarity):
|
128 |
-
# 请求GPT response
|
129 |
-
return "update_model_func output", [(model_images, "模特"), (cloths_images, "衣服")]*5
|
130 |
-
|
131 |
-
def image_module(self, mode='dress_up', title='image_module', desc=''):
|
132 |
-
if mode == 'dress_up':
|
133 |
-
# 模特试衣
|
134 |
-
func = self.dress_up_func
|
135 |
-
elif mode == 'update_model':
|
136 |
-
# 更新模特
|
137 |
-
func = self.update_model_func
|
138 |
-
else:
|
139 |
-
func = self.dress_up_func
|
140 |
-
examples = []
|
141 |
-
for i, (c, m) in enumerate( zip(self.clothes_files, self.model_files) ):
|
142 |
-
examples.append([c, m, 'sepia', 0.6] )
|
143 |
-
comp = gr.Interface(
|
144 |
-
fn= func,
|
145 |
-
inputs=[gr.Image(label='衣服', scale=1, height=300),
|
146 |
-
gr.Image(label='模特',scale=1, height=300),
|
147 |
-
gr.Dropdown(['sepia', 'grayscale']),
|
148 |
-
gr.Slider(0, 10, value=5, label="相似度控制", info="similarity between 2 and 20")],
|
149 |
-
outputs=[gr.Textbox(label="文本输出"),
|
150 |
-
gr.Gallery(label='图片展示',height='auto',columns=3)
|
151 |
-
],
|
152 |
-
title=title,
|
153 |
-
description=desc,
|
154 |
-
theme="huggingface",
|
155 |
-
examples=examples,
|
156 |
-
)
|
157 |
-
return comp
|
158 |
-
|
159 |
-
def image_module_v2(self, mode='dress_up', title='image_module', desc=''):
|
160 |
-
def upload_file(files, current_files):
|
161 |
-
file_paths = current_files + [file.name for file in files]
|
162 |
-
return file_paths
|
163 |
-
|
164 |
-
def gen_images(clothes_img, model_img):
|
165 |
-
new_images = []
|
166 |
-
#call LLM/SD here
|
167 |
-
new_images.append(clothes_img)
|
168 |
-
new_images.append(model_img)
|
169 |
-
return new_images
|
170 |
-
|
171 |
-
def clear_images():
|
172 |
-
return []
|
173 |
-
def slider_func(val):
|
174 |
-
print("slider value: ", val)
|
175 |
-
|
176 |
-
|
177 |
-
if mode == 'dress_up':
|
178 |
-
# 模特试衣
|
179 |
-
func = self.dress_up_func
|
180 |
-
elif mode == 'update_model':
|
181 |
-
# 更新模特
|
182 |
-
func = self.update_model_func
|
183 |
-
else:
|
184 |
-
func = self.dress_up_func
|
185 |
-
|
186 |
-
with gr.Blocks() as demo:
|
187 |
-
# first row
|
188 |
-
with gr.Row():
|
189 |
-
# first col -> input column
|
190 |
-
with gr.Column():
|
191 |
-
model_image=gr.Image(label="模特图片",type='pil', height=None, width=None)
|
192 |
-
clothes_image=gr.Image(label="衣服图片",type='pil', height=None, width=None)
|
193 |
-
upload_button = gr.UploadButton("选择图片上传 (Upload Photos)", file_types=["image"], file_count="multiple")
|
194 |
-
generate_img_button = gr.Button("生成图片")
|
195 |
-
slider = gr.Slider(0, 10, value=5, label="相似度控制", info="similarity between 2 and 20")
|
196 |
-
clear_button = gr.Button("清空图片 (Clear Photos)")
|
197 |
-
|
198 |
-
# analyze_button = gr.Button("显示图片信息 (Show Image Info)")
|
199 |
-
input_image_gallery = gr.Gallery(type='pil', label='输入图片列表 (Photos)', height=250, columns=4, visible=True)
|
200 |
-
# second col-> output column
|
201 |
-
with gr.Column():
|
202 |
-
image_gallery = gr.Gallery(type='pil', label='图片列表 (Photos)', height=250, columns=4, visible=True)
|
203 |
-
# user_images = gr.State([])
|
204 |
-
# upload_button.upload(upload_file, inputs=[upload_button, user_images], outputs=image_gallery)
|
205 |
-
slider.input(fn=slider_func)
|
206 |
-
generate_img_button.click(gen_images,inputs=[clothes_image, model_image], outputs= image_gallery)
|
207 |
-
clear_button.click(fn=clear_images, inputs=None, outputs=image_gallery)
|
208 |
-
# analyze_button.click(get_image_info, inputs=image_gallery, outputs=analysis_output)
|
209 |
-
return demo
|
210 |
-
|
211 |
-
def gen_text(self,inputs, LLM_version='Qwen'):
|
212 |
-
# 设置前置prompt做限制
|
213 |
-
prompts = "你是一个时尚服装行业的专家, 请回答下面问题,只罗列答案不要返回多余的词:"
|
214 |
-
# model= 'deepseek-r1:1.5b'
|
215 |
-
# return call_LLM(inputs,prompts, model_version='llama3.2:latest')
|
216 |
-
return call_LLM(inputs,prompts, model_version=LLM_version)
|
217 |
-
|
218 |
-
def text_module(self, title='文本生成', desc="AI生成关键词"):
|
219 |
-
comp = gr.Interface(
|
220 |
-
fn= self.gen_text,
|
221 |
-
inputs=[gr.Textbox(label="文本输入"), gr.Dropdown(['deepseek-r1:1.5b', 'llama3.2:latest','Qwen'], label='模型选择')],
|
222 |
-
outputs=[gr.Textbox(label="结果输出")],
|
223 |
-
title=title,
|
224 |
-
description=desc,
|
225 |
-
theme="huggingface",
|
226 |
-
examples=[
|
227 |
-
["列出2024年最受欢迎的10个衣服品牌","llama3.2:latest"],
|
228 |
-
["哪些款式的女装比较潮流, 请列出10个女装品类","Qwen"],
|
229 |
-
["随机生成10个衣服类目并列出来","Qwen"]],
|
230 |
-
cache_examples=True,
|
231 |
-
)
|
232 |
-
return comp
|
233 |
-
|
234 |
-
def generate_interface(self,):
|
235 |
-
tab_interface_ls = {}
|
236 |
-
# module 1: 生词
|
237 |
-
tab_interface_ls['AI生词'] = self.text_module()
|
238 |
-
|
239 |
-
# module 2: 服装上身
|
240 |
-
tab_interface_ls['服装搭配'] = self.image_module('dress_up', title="服装搭配")
|
241 |
-
|
242 |
-
# module 3: 换模特
|
243 |
-
tab_interface_ls['更换模特'] = self.image_module('update_model', title="更换模特")
|
244 |
-
|
245 |
-
comp = gr.TabbedInterface(
|
246 |
-
list(tab_interface_ls.values()), list(tab_interface_ls.keys())
|
247 |
-
)
|
248 |
-
return comp
|
249 |
-
|
250 |
-
def main():
|
251 |
-
print(f"Runing Gradio APP")
|
252 |
-
component = GradioApp()
|
253 |
-
component.generate_interface().launch(share=True)
|
254 |
-
|
255 |
-
|
256 |
-
if __name__ == "__main__":
|
257 |
-
main()
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
# class GradioUnitTest():
|
263 |
-
# def __init__(self):
|
264 |
-
# api_key = "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"
|
265 |
-
# # "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"
|
266 |
-
# os.environ["OPENAI_API_KEY"] = api_key
|
267 |
-
# self.llm_model = ChatOpenAI(temperature=0.5, model="gpt-3.5-turbo")
|
268 |
-
# # self.llm_model= None
|
269 |
-
# self.client = OpenAI(api_key=api_key)
|
270 |
-
# cur_path =os.getcwd()
|
271 |
-
# root_path = '/'.join(cur_path.split("/")[:-2])
|
272 |
-
|
273 |
-
# suno_result_path = os.path.join(root_path,'examples','suno_musics')
|
274 |
-
# # self.suno = Suno(result_path=suno_result_path)
|
275 |
-
# self.suno= None
|
276 |
-
# pass
|
277 |
-
|
278 |
-
# def test_text(self, input_text, mode = 'count'):
|
279 |
-
# def process_test( _text, mode = 'count'):
|
280 |
-
# def count_words(text):
|
281 |
-
# words = text.split(" ")
|
282 |
-
# res_dict = {}
|
283 |
-
# for word in words:
|
284 |
-
# if word in res_dict:
|
285 |
-
# res_dict[word] += 1
|
286 |
-
# else:
|
287 |
-
# res_dict[word] = 1
|
288 |
-
# res = "\n".join([f"word: {key}, count: {value}" for key, value in res_dict.items()])
|
289 |
-
# return res
|
290 |
-
|
291 |
-
# def reverse_text(text):
|
292 |
-
# return text[::-1]
|
293 |
-
|
294 |
-
# if mode == 'count':
|
295 |
-
# return count_words(_text)
|
296 |
-
# return reverse_text(_text)
|
297 |
-
|
298 |
-
# res = f"Got text from textbox: {input_text}"
|
299 |
-
# return res, process_test(input_text, mode)
|
300 |
-
# # return res, count_words(input_text)
|
301 |
-
|
302 |
-
# def test_image(self, input_image, filter_mode='sepia'):
|
303 |
-
# def filter_image(input_image, filter_mode='sepia'):
|
304 |
-
# def sepia(input_img):
|
305 |
-
# sepia_filter = np.array([
|
306 |
-
# [0.393, 0.769, 0.189],
|
307 |
-
# [0.349, 0.686, 0.168],
|
308 |
-
# [0.272, 0.534, 0.131]
|
309 |
-
# ])
|
310 |
-
# sepia_img = input_img.dot(sepia_filter.T)
|
311 |
-
# sepia_img /= sepia_img.max()
|
312 |
-
# return sepia_img
|
313 |
-
# def grayscale(input_img):
|
314 |
-
# input_img = np.mean(input_img, axis=2) / np.max(input_img)
|
315 |
-
# return input_img
|
316 |
-
|
317 |
-
# if filter_mode == 'sepia':
|
318 |
-
# return sepia(input_image)
|
319 |
-
# elif filter_mode == 'grayscale':
|
320 |
-
# return grayscale(input_image)
|
321 |
-
# else:
|
322 |
-
# return input_image
|
323 |
-
# res = f"Got image from image input: {input_image}"
|
324 |
-
# filtered_image = filter_image(input_image, filter_mode)
|
325 |
-
# return res, filtered_image
|
326 |
-
|
327 |
-
# def test_audio(self, input_audio, filter_mode='echo', prompt='', checkbox_ls=[]):
|
328 |
-
# def process_audio(input_audio, filter_mode='echo'):
|
329 |
-
# print("input_audio shape: ", input_audio[1].shape, input_audio)
|
330 |
-
# def echo(input_audio):
|
331 |
-
# aud = np.concatenate([input_audio[1], input_audio[1]], axis=0)
|
332 |
-
# return (input_audio[0], aud)
|
333 |
-
# def reverse(input_audio):
|
334 |
-
# return (input_audio[0], input_audio[1][::-1])
|
335 |
-
|
336 |
-
# if filter_mode == 'echo':
|
337 |
-
# res_audio = echo(input_audio)
|
338 |
-
# elif filter_mode == 'reverse':
|
339 |
-
# res_audio = reverse(input_audio)
|
340 |
-
# else:
|
341 |
-
# res_audio = input_audio
|
342 |
-
# return res_audio
|
343 |
-
# print("checkbox_ls: ", checkbox_ls)
|
344 |
-
# res = f"Got audio from audio input: {input_audio}"
|
345 |
-
# wait_audio = 'wait_audio' in checkbox_ls
|
346 |
-
# make_instrumental = 'make_instrumental' in checkbox_ls
|
347 |
-
# if checkbox_ls != []:
|
348 |
-
# print('checlbox_ls: ', checkbox_ls)
|
349 |
-
# generated_audio_path=''
|
350 |
-
# if prompt != '':
|
351 |
-
# music_paths = self.test_music_generation(prompt, make_instrumental, wait_audio)
|
352 |
-
# generated_audio_path = '\n'.join(music_paths)
|
353 |
-
# res = f"Got audio from suno: {generated_audio_path}"
|
354 |
-
# processed_audio = process_audio(input_audio, filter_mode)
|
355 |
-
# return res, processed_audio, generated_audio_path
|
356 |
-
|
357 |
-
# def test_video(self, input_video, filter_mode='flip'):
|
358 |
-
# def process_video(input_video, filter_mode='flip'):
|
359 |
-
# print("input_video data: ", input_video)
|
360 |
-
|
361 |
-
# def clip(input_video):
|
362 |
-
# clip1 = VideoFileClip(input_video)
|
363 |
-
# clip2 = VideoFileClip(input_video).subclip(2,3)
|
364 |
-
# clip3 = VideoFileClip(input_video)
|
365 |
-
# final_clip = concatenate_videoclips([clip1,clip2,clip3])
|
366 |
-
# output_video = "final_clip.mp4"
|
367 |
-
# final_clip.write_videofile(output_video)
|
368 |
-
# return output_video
|
369 |
-
# def flip(input_video):
|
370 |
-
# return np.flip(input_video, axis=1)
|
371 |
-
# def rotate(input_video):
|
372 |
-
# return np.rot90(input_video)
|
373 |
-
# if filter_mode == 'clip':
|
374 |
-
# return clip(input_video)
|
375 |
-
# elif filter_mode == 'flip':
|
376 |
-
# return flip(input_video)
|
377 |
-
# elif filter_mode == 'rotate':
|
378 |
-
# return rotate(input_video)
|
379 |
-
# else:
|
380 |
-
# return input_video
|
381 |
-
# res = f"Got video from video input: {input_video}"
|
382 |
-
# processed_video = process_video(input_video, filter_mode)
|
383 |
-
# return res, processed_video
|
384 |
-
|
385 |
-
# def test_chatbot(self, input_text, history):
|
386 |
-
# history_langchain_format =[]
|
387 |
-
# for human, ai in history:
|
388 |
-
# history_langchain_format.append(HumanMessage(human))
|
389 |
-
# history_langchain_format.append(AIMessage(ai))
|
390 |
-
# history_langchain_format.append(content=input_text)
|
391 |
-
# llm_response = self.llm_model(history_langchain_format)
|
392 |
-
# return llm_response.content
|
393 |
-
|
394 |
-
# def predict(self, message, history):
|
395 |
-
# history_openai_format = []
|
396 |
-
# for human, assistant in history:
|
397 |
-
# history_openai_format.append({"role": "user", "content": human })
|
398 |
-
# history_openai_format.append({"role": "assistant", "content":assistant})
|
399 |
-
# history_openai_format.append({"role": "user", "content": message})
|
400 |
-
|
401 |
-
# response = self.client.chat.completions.create(model='gpt-3.5-turbo',
|
402 |
-
# messages= history_openai_format,
|
403 |
-
# temperature=1.0,
|
404 |
-
# stream=True)
|
405 |
-
|
406 |
-
# partial_message = ""
|
407 |
-
# for chunk in response:
|
408 |
-
# if chunk.choices[0].delta.content is not None:
|
409 |
-
# partial_message = partial_message + chunk.choices[0].delta.content
|
410 |
-
# yield partial_message
|
411 |
-
|
412 |
-
# def predict_v2(self, message, history):
|
413 |
-
|
414 |
-
# url = "https://api.link-ai.chat/v1/chat/completions"
|
415 |
-
# headers = {
|
416 |
-
# 'Authorization': 'Bearer Link_USN4Vru40ciqYkdpeWywmOOIOPHGLYm8EuAGm0xE0b',
|
417 |
-
# 'Content-Type': 'application/json'
|
418 |
-
# }
|
419 |
-
# history_openai_format = []
|
420 |
-
# for human, assistant in history:
|
421 |
-
# history_openai_format.append({"role": "user", "content": human })
|
422 |
-
# history_openai_format.append({"role": "assistant", "content":assistant})
|
423 |
-
# history_openai_format.append({"role": "user", "content": message})
|
424 |
-
|
425 |
-
|
426 |
-
# data = {
|
427 |
-
# "app_code": "default",
|
428 |
-
# "messages": history_openai_format,
|
429 |
-
# }
|
430 |
-
|
431 |
-
# response = requests.post(url, headers=headers, json=data).json()
|
432 |
-
# partial_message = ""
|
433 |
-
# for chunk in response['choices']:
|
434 |
-
# if chunk['message']["content"] is not None:
|
435 |
-
# partial_message = partial_message + chunk['message']["content"]
|
436 |
-
# yield partial_message
|
437 |
-
|
438 |
-
|
439 |
-
# def predict_v3(self, message, history):
|
440 |
-
|
441 |
-
# url = "https://api.link-ai.chat/v1/chat/completions"
|
442 |
-
# headers = {
|
443 |
-
# 'Authorization': 'Bearer Link_USN4Vru40ciqYkdpeWywmOOIOPHGLYm8EuAGm0xE0b',
|
444 |
-
# 'Content-Type': 'application/json'
|
445 |
-
# }
|
446 |
-
# history_openai_format = []
|
447 |
-
# for human, assistant in history:
|
448 |
-
# history_openai_format.append({"role": "user", "content": human })
|
449 |
-
# history_openai_format.append({"role": "assistant", "content":assistant})
|
450 |
-
# history_openai_format.append({"role": "user", "content": message})
|
451 |
-
|
452 |
-
|
453 |
-
# data = {
|
454 |
-
# "app_code": "default",
|
455 |
-
# "messages": history_openai_format,
|
456 |
-
# }
|
457 |
-
|
458 |
-
# response = requests.post(url, headers=headers, json=data).json()
|
459 |
-
# partial_message = ""
|
460 |
-
# for chunk in response['choices']:
|
461 |
-
# if chunk['message']["content"] is not None:
|
462 |
-
# partial_message = partial_message + chunk['message']["content"]
|
463 |
-
# yield partial_message
|
464 |
-
|
465 |
-
# def test_music_generation(self, prompt, make_instrumental=False, wait_audio=False):
|
466 |
-
# request = {
|
467 |
-
# "prompt": prompt,
|
468 |
-
# "make_instrumental": make_instrumental,
|
469 |
-
# "wait_audio": wait_audio
|
470 |
-
# }
|
471 |
-
# # music_ls = self.suno.generate_music(request)
|
472 |
-
# music_ls = []
|
473 |
-
# return music_ls
|
474 |
-
|
475 |
-
# def run_test(self, mode='text'):
|
476 |
-
# tab_interface_ls = {}
|
477 |
-
# if mode == 'text' or mode == 'mix':
|
478 |
-
# comp = gr.Interface(
|
479 |
-
# fn= self.test_text,
|
480 |
-
# inputs=['textbox', gr.Dropdown(['count', 'reverse'])],
|
481 |
-
# outputs=["textbox", "textbox"],
|
482 |
-
# title="test text module",
|
483 |
-
# description="test text.",
|
484 |
-
# theme="huggingface",
|
485 |
-
# examples=[
|
486 |
-
# ["A group of friends go on a road trip to find a hidden treasure."],
|
487 |
-
# ["A scientist discovers a way to travel through time."],
|
488 |
-
# ["A group of survivors try to escape a zombie apocalypse."],
|
489 |
-
# ],
|
490 |
-
# )
|
491 |
-
# tab_interface_ls['Text Ops'] = comp
|
492 |
-
# if mode == 'text':
|
493 |
-
# return comp
|
494 |
-
# if mode == 'image' or mode == 'mix':
|
495 |
-
# # https://www.gradio.app/guides/the-interface-class
|
496 |
-
# comp = gr.Interface(
|
497 |
-
# fn= self.test_image,
|
498 |
-
# inputs=['image', gr.Dropdown(['sepia', 'grayscale'])],
|
499 |
-
# outputs=["textbox",'image'],
|
500 |
-
# title="test image preprocess Module",
|
501 |
-
# description="test text.",
|
502 |
-
# theme="huggingface",
|
503 |
-
# examples=[
|
504 |
-
# ["/mnt/c/Users/wwk/Pictures/OIP.jpg", "sepia"],
|
505 |
-
# ],
|
506 |
-
# )
|
507 |
-
# tab_interface_ls['Image Ops'] = comp
|
508 |
-
# if mode == 'image':
|
509 |
-
# return comp
|
510 |
-
|
511 |
-
# if mode == 'audio' or mode == 'mix':
|
512 |
-
# comp = gr.Interface(
|
513 |
-
# fn= self.test_audio,
|
514 |
-
# inputs=['audio', gr.Dropdown(['echo', 'reverse']), 'textbox', gr.CheckboxGroup([ 'make_instrumental' ,'wait_audio'], label="Suno options", info="make_instrumental<bool>, wait_audio:<bool>") ],
|
515 |
-
# outputs=["textbox", 'audio'],
|
516 |
-
# title="test audio preprocess Module",
|
517 |
-
# description="test audio.",
|
518 |
-
# theme="huggingface",
|
519 |
-
# examples=[
|
520 |
-
# ["/mnt/d/workspace/projects/movie_generator/examples/audio/两只老虎,两只老虎-神秘-欢快-v2.mp3", "echo"],
|
521 |
-
# ["/mnt/d/workspace/projects/movie_generator/examples/audio/两只老虎,两只老虎-神秘-欢快-v2.mp3", "reverse"],
|
522 |
-
# ],
|
523 |
-
# )
|
524 |
-
# tab_interface_ls['Audio Ops'] = comp
|
525 |
-
# if mode == 'audio':
|
526 |
-
# return comp
|
527 |
-
|
528 |
-
# if mode == 'video' or mode == 'mix':
|
529 |
-
# comp = gr.Interface(
|
530 |
-
# fn= self.test_video,
|
531 |
-
# inputs= [ 'video', gr.Dropdown(['clip', 'rotate'])],
|
532 |
-
# outputs=["textbox", 'video'],
|
533 |
-
# title="test video preprocess Module",
|
534 |
-
# description="test video.",
|
535 |
-
# theme="huggingface",
|
536 |
-
# examples=[
|
537 |
-
# ["/mnt/d/workspace/projects/movie_generator/examples/video/2月12日.mp4", "clip"],
|
538 |
-
# ],
|
539 |
-
# )
|
540 |
-
# tab_interface_ls['Video Ops'] = comp
|
541 |
-
# if mode == 'video':
|
542 |
-
# return comp
|
543 |
-
|
544 |
-
# if mode == 'chat' or mode == 'mix':
|
545 |
-
# # https://www.gradio.app/guides/creating-a-custom-chatbot-with-blocks
|
546 |
-
# # comp = gr.ChatInterface(self.test_chatbot)
|
547 |
-
# comp = gr.ChatInterface(self.predict_v2)
|
548 |
-
# tab_interface_ls['ChatBot'] = comp
|
549 |
-
# if mode == 'chat':
|
550 |
-
# return comp
|
551 |
-
# if mode == 'mix':
|
552 |
-
# # mix mode, use radio button to select the mode
|
553 |
-
# comp = gr.TabbedInterface(
|
554 |
-
# list(tab_interface_ls.values()), list(tab_interface_ls.keys())
|
555 |
-
# )
|
556 |
-
# return comp
|
557 |
-
# else:
|
558 |
-
# def flip_text(x):
|
559 |
-
# return x[::-1]
|
560 |
-
# def flip_image(x):
|
561 |
-
# return np.fliplr(x)
|
562 |
-
# with gr.Blocks() as comp:
|
563 |
-
# gr.Markdown("Flip text or image files using this demo.")
|
564 |
-
# with gr.Tab("Flip Text"):
|
565 |
-
# text_input = gr.Textbox()
|
566 |
-
# text_output = gr.Textbox()
|
567 |
-
# text_button = gr.Button("Flip")
|
568 |
-
# with gr.Tab("Flip Image"):
|
569 |
-
# with gr.Row():
|
570 |
-
# image_input = gr.Image()
|
571 |
-
# image_output = gr.Image()
|
572 |
-
# image_button = gr.Button("Flip")
|
573 |
-
|
574 |
-
# with gr.Accordion("Open for More!", open=False):
|
575 |
-
# gr.Markdown("Look at me...")
|
576 |
-
# temp_slider = gr.Slider(
|
577 |
-
# minimum=0.0,
|
578 |
-
# maximum=1.0,
|
579 |
-
# value=0.1,
|
580 |
-
# step=0.1,
|
581 |
-
# interactive=True,
|
582 |
-
# label="Slide me",
|
583 |
-
# )
|
584 |
-
# temp_slider.change(lambda x: x, [temp_slider])
|
585 |
-
|
586 |
-
# text_button.click(flip_text, inputs=text_input, outputs=text_output)
|
587 |
-
# image_button.click(flip_image, inputs=image_input, outputs=image_output)
|
588 |
-
# return comp
|
|
|
1 |
+
import gradio as gr
|
2 |
+
|
3 |
+
with gr.Blocks(fill_height=True) as demo:
|
4 |
+
with gr.Sidebar():
|
5 |
+
gr.Markdown("# Inference Provider")
|
6 |
+
gr.Markdown("This Space showcases the black-forest-labs/FLUX.1-dev model, served by the nebius API. Sign in with your Hugging Face account to use this API.")
|
7 |
+
button = gr.LoginButton("Sign in")
|
8 |
+
gr.load("models/black-forest-labs/FLUX.1-dev", accept_token=button, provider="nebius")
|
9 |
+
|
10 |
+
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
appv2.py
ADDED
@@ -0,0 +1,588 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Dependencies: gradio, fire, langchain, openai, numpy, ffmpeg, moviepy
|
2 |
+
# API Reference: https://www.gradio.app/docs/,
|
3 |
+
# https://github.com/zhayujie/chatgpt-on-wechat, https://docs.link-ai.tech/platform/api, https://docs.link-ai.tech/api#/
|
4 |
+
# Description: This file contains the code to run the gradio app for the movie generator.
|
5 |
+
#
|
6 |
+
#
|
7 |
+
#
|
8 |
+
# 参考链接: https://zhuanlan.zhihu.com/p/684798694
|
9 |
+
#
|
10 |
+
#
|
11 |
+
####################################################################################################
|
12 |
+
|
13 |
+
import gradio as gr
|
14 |
+
#import fire
|
15 |
+
from gradio_client import Client, file
|
16 |
+
import numpy as np
|
17 |
+
from langchain.chat_models import ChatOpenAI
|
18 |
+
from langchain.schema import AIMessage, HumanMessage
|
19 |
+
|
20 |
+
from openai import OpenAI
|
21 |
+
import os
|
22 |
+
import moviepy.editor as mppyth
|
23 |
+
from moviepy.editor import *
|
24 |
+
# from movie_generator.agi.suno.suno import Suno
|
25 |
+
import requests
|
26 |
+
|
27 |
+
|
28 |
+
import ollama
|
29 |
+
from ollama import chat
|
30 |
+
from ollama import ChatResponse
|
31 |
+
|
32 |
+
# ollama.pull("deepseek-r1:1.5b")
|
33 |
+
# print( 'ollama result:',ollama.list())
|
34 |
+
# response: ChatResponse = chat(model='deepseek-r1:1.5b', messages=[
|
35 |
+
# {
|
36 |
+
# 'role': 'user',
|
37 |
+
# 'content': 'Why is the sky blue?',
|
38 |
+
# },
|
39 |
+
# ])
|
40 |
+
# print(response['message']['content'])
|
41 |
+
# # or access fields directly from the response object
|
42 |
+
# print(response.message.content)
|
43 |
+
|
44 |
+
def call_LLM(inputs, prompts= '你是一个时尚服装行业的专家, 请回答下面问题:', model_version = 'Qwen'):
|
45 |
+
inputs = prompts + ' ' + inputs
|
46 |
+
if model_version=="Qwen":
|
47 |
+
from openai import OpenAI
|
48 |
+
|
49 |
+
model_id = 'Qwen/Qwen2.5-3B-Instruct-GGUF'
|
50 |
+
|
51 |
+
client = OpenAI(
|
52 |
+
base_url='https://ms-fc-2ea3820b-8c19.api-inference.modelscope.cn/v1',
|
53 |
+
api_key='e37bfdad-0f6a-46c2-a7bf-f9dc365967e3'
|
54 |
+
)
|
55 |
+
|
56 |
+
response=client.chat.completions.create(
|
57 |
+
model=model_id,
|
58 |
+
messages=[{"role":"user", "content":inputs}],
|
59 |
+
stream=True
|
60 |
+
)
|
61 |
+
|
62 |
+
res= []
|
63 |
+
for chunk in response:
|
64 |
+
# print(chunk.choices[0].delta.content, end='', flush=True)
|
65 |
+
res.append(chunk.choices[0].delta.content)
|
66 |
+
return "".join(res)
|
67 |
+
elif model_version in ['deepseek-r1:1.5b', 'llama3.2:latest']:
|
68 |
+
|
69 |
+
# model= 'deepseek-r1:1.5b'
|
70 |
+
# model = 'llama3.2:latest'
|
71 |
+
response: ChatResponse = chat(model= model_version, messages=[
|
72 |
+
{
|
73 |
+
'role': 'user',
|
74 |
+
'content': prompts + " " + inputs,
|
75 |
+
},
|
76 |
+
])
|
77 |
+
return response['message']['content']
|
78 |
+
else:
|
79 |
+
return "LLM version is not supported yet."
|
80 |
+
import os
|
81 |
+
class GradioApp:
|
82 |
+
def __init__(self,config=None):
|
83 |
+
#config with info of
|
84 |
+
# model version
|
85 |
+
# prompts
|
86 |
+
#others
|
87 |
+
self.config=config
|
88 |
+
# self.image_dir = "/mnt/d/workspace/projects/Project_TextImage_Generator/examples"
|
89 |
+
self.image_dir = "../examples"
|
90 |
+
self.model_dir = os.path.join(self.image_dir, "models")
|
91 |
+
self.clothes_dir = os.path.join(self.image_dir, "clothes")
|
92 |
+
self.reference_dir = os.path.join(self.image_dir, "references")
|
93 |
+
self.model_files = [os.path.join(self.model_dir, f) for f in os.listdir(self.model_dir)]
|
94 |
+
self.clothes_files = [os.path.join(self.clothes_dir, f) for f in os.listdir(self.clothes_dir)]
|
95 |
+
self.reference_files = [os.path.join(self.reference_dir, f) for f in os.listdir(self.reference_dir)]
|
96 |
+
pass
|
97 |
+
|
98 |
+
|
99 |
+
def test_image_func(self, input_image, filter_mode='sepia'):
|
100 |
+
def filter_image(input_image, filter_mode='sepia'):
|
101 |
+
def sepia(input_img):
|
102 |
+
sepia_filter = np.array([
|
103 |
+
[0.393, 0.769, 0.189],
|
104 |
+
[0.349, 0.686, 0.168],
|
105 |
+
[0.272, 0.534, 0.131]
|
106 |
+
])
|
107 |
+
sepia_img = input_img.dot(sepia_filter.T)
|
108 |
+
sepia_img /= sepia_img.max()
|
109 |
+
return sepia_img
|
110 |
+
def grayscale(input_img):
|
111 |
+
input_img = np.mean(input_img, axis=2) / np.max(input_img)
|
112 |
+
return input_img
|
113 |
+
if filter_mode == 'sepia':
|
114 |
+
return sepia(input_image)
|
115 |
+
elif filter_mode == 'grayscale':
|
116 |
+
return grayscale(input_image)
|
117 |
+
else:
|
118 |
+
return input_image
|
119 |
+
res = f"Got image from image input: {input_image}"
|
120 |
+
filtered_image = filter_image(input_image, filter_mode)
|
121 |
+
return res, filtered_image
|
122 |
+
|
123 |
+
def dress_up_func(self, model_images, cloths_images, prompts, similarity):
|
124 |
+
# 请求GPT response
|
125 |
+
return "dress_up_func output",[(model_images, "模特"), (cloths_images, "衣服")]*5
|
126 |
+
|
127 |
+
def update_model_func(self, model_images, cloths_images, prompts, similarity):
|
128 |
+
# 请求GPT response
|
129 |
+
return "update_model_func output", [(model_images, "模特"), (cloths_images, "衣服")]*5
|
130 |
+
|
131 |
+
def image_module(self, mode='dress_up', title='image_module', desc=''):
|
132 |
+
if mode == 'dress_up':
|
133 |
+
# 模特试衣
|
134 |
+
func = self.dress_up_func
|
135 |
+
elif mode == 'update_model':
|
136 |
+
# 更新模特
|
137 |
+
func = self.update_model_func
|
138 |
+
else:
|
139 |
+
func = self.dress_up_func
|
140 |
+
examples = []
|
141 |
+
for i, (c, m) in enumerate( zip(self.clothes_files, self.model_files) ):
|
142 |
+
examples.append([c, m, 'sepia', 0.6] )
|
143 |
+
comp = gr.Interface(
|
144 |
+
fn= func,
|
145 |
+
inputs=[gr.Image(label='衣服', scale=1, height=300),
|
146 |
+
gr.Image(label='模特',scale=1, height=300),
|
147 |
+
gr.Dropdown(['sepia', 'grayscale']),
|
148 |
+
gr.Slider(0, 10, value=5, label="相似度控制", info="similarity between 2 and 20")],
|
149 |
+
outputs=[gr.Textbox(label="文本输出"),
|
150 |
+
gr.Gallery(label='图片展示',height='auto',columns=3)
|
151 |
+
],
|
152 |
+
title=title,
|
153 |
+
description=desc,
|
154 |
+
theme="huggingface",
|
155 |
+
examples=examples,
|
156 |
+
)
|
157 |
+
return comp
|
158 |
+
|
159 |
+
def image_module_v2(self, mode='dress_up', title='image_module', desc=''):
|
160 |
+
def upload_file(files, current_files):
|
161 |
+
file_paths = current_files + [file.name for file in files]
|
162 |
+
return file_paths
|
163 |
+
|
164 |
+
def gen_images(clothes_img, model_img):
|
165 |
+
new_images = []
|
166 |
+
#call LLM/SD here
|
167 |
+
new_images.append(clothes_img)
|
168 |
+
new_images.append(model_img)
|
169 |
+
return new_images
|
170 |
+
|
171 |
+
def clear_images():
|
172 |
+
return []
|
173 |
+
def slider_func(val):
|
174 |
+
print("slider value: ", val)
|
175 |
+
|
176 |
+
|
177 |
+
if mode == 'dress_up':
|
178 |
+
# 模特试衣
|
179 |
+
func = self.dress_up_func
|
180 |
+
elif mode == 'update_model':
|
181 |
+
# 更新模特
|
182 |
+
func = self.update_model_func
|
183 |
+
else:
|
184 |
+
func = self.dress_up_func
|
185 |
+
|
186 |
+
with gr.Blocks() as demo:
|
187 |
+
# first row
|
188 |
+
with gr.Row():
|
189 |
+
# first col -> input column
|
190 |
+
with gr.Column():
|
191 |
+
model_image=gr.Image(label="模特图片",type='pil', height=None, width=None)
|
192 |
+
clothes_image=gr.Image(label="衣服图片",type='pil', height=None, width=None)
|
193 |
+
upload_button = gr.UploadButton("选择图片上传 (Upload Photos)", file_types=["image"], file_count="multiple")
|
194 |
+
generate_img_button = gr.Button("生成图片")
|
195 |
+
slider = gr.Slider(0, 10, value=5, label="相似度控制", info="similarity between 2 and 20")
|
196 |
+
clear_button = gr.Button("清空图片 (Clear Photos)")
|
197 |
+
|
198 |
+
# analyze_button = gr.Button("显示图片信息 (Show Image Info)")
|
199 |
+
input_image_gallery = gr.Gallery(type='pil', label='输入图片列表 (Photos)', height=250, columns=4, visible=True)
|
200 |
+
# second col-> output column
|
201 |
+
with gr.Column():
|
202 |
+
image_gallery = gr.Gallery(type='pil', label='图片列表 (Photos)', height=250, columns=4, visible=True)
|
203 |
+
# user_images = gr.State([])
|
204 |
+
# upload_button.upload(upload_file, inputs=[upload_button, user_images], outputs=image_gallery)
|
205 |
+
slider.input(fn=slider_func)
|
206 |
+
generate_img_button.click(gen_images,inputs=[clothes_image, model_image], outputs= image_gallery)
|
207 |
+
clear_button.click(fn=clear_images, inputs=None, outputs=image_gallery)
|
208 |
+
# analyze_button.click(get_image_info, inputs=image_gallery, outputs=analysis_output)
|
209 |
+
return demo
|
210 |
+
|
211 |
+
def gen_text(self,inputs, LLM_version='Qwen'):
|
212 |
+
# 设置前置prompt做限制
|
213 |
+
prompts = "你是一个时尚服装行业的专家, 请回答下面问题,只罗列答案不要返回多余的词:"
|
214 |
+
# model= 'deepseek-r1:1.5b'
|
215 |
+
# return call_LLM(inputs,prompts, model_version='llama3.2:latest')
|
216 |
+
return call_LLM(inputs,prompts, model_version=LLM_version)
|
217 |
+
|
218 |
+
def text_module(self, title='文本生成', desc="AI生成关键词"):
|
219 |
+
comp = gr.Interface(
|
220 |
+
fn= self.gen_text,
|
221 |
+
inputs=[gr.Textbox(label="文本输入"), gr.Dropdown(['deepseek-r1:1.5b', 'llama3.2:latest','Qwen'], label='模型选择')],
|
222 |
+
outputs=[gr.Textbox(label="结果输出")],
|
223 |
+
title=title,
|
224 |
+
description=desc,
|
225 |
+
theme="huggingface",
|
226 |
+
examples=[
|
227 |
+
["列出2024年最受欢迎的10个衣服品牌","llama3.2:latest"],
|
228 |
+
["哪些款式的女装比较潮流, 请列出10个女装品类","Qwen"],
|
229 |
+
["随机生成10个衣服类目并列出来","Qwen"]],
|
230 |
+
cache_examples=True,
|
231 |
+
)
|
232 |
+
return comp
|
233 |
+
|
234 |
+
def generate_interface(self,):
|
235 |
+
tab_interface_ls = {}
|
236 |
+
# module 1: 生词
|
237 |
+
tab_interface_ls['AI生词'] = self.text_module()
|
238 |
+
|
239 |
+
# module 2: 服装上身
|
240 |
+
tab_interface_ls['服装搭配'] = self.image_module('dress_up', title="服装搭配")
|
241 |
+
|
242 |
+
# module 3: 换模特
|
243 |
+
tab_interface_ls['更换模特'] = self.image_module('update_model', title="更换模特")
|
244 |
+
|
245 |
+
comp = gr.TabbedInterface(
|
246 |
+
list(tab_interface_ls.values()), list(tab_interface_ls.keys())
|
247 |
+
)
|
248 |
+
return comp
|
249 |
+
|
250 |
+
def main():
|
251 |
+
print(f"Runing Gradio APP")
|
252 |
+
component = GradioApp()
|
253 |
+
component.generate_interface().launch(share=True)
|
254 |
+
|
255 |
+
|
256 |
+
if __name__ == "__main__":
|
257 |
+
main()
|
258 |
+
|
259 |
+
|
260 |
+
|
261 |
+
|
262 |
+
# class GradioUnitTest():
|
263 |
+
# def __init__(self):
|
264 |
+
# api_key = "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"
|
265 |
+
# # "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"
|
266 |
+
# os.environ["OPENAI_API_KEY"] = api_key
|
267 |
+
# self.llm_model = ChatOpenAI(temperature=0.5, model="gpt-3.5-turbo")
|
268 |
+
# # self.llm_model= None
|
269 |
+
# self.client = OpenAI(api_key=api_key)
|
270 |
+
# cur_path =os.getcwd()
|
271 |
+
# root_path = '/'.join(cur_path.split("/")[:-2])
|
272 |
+
|
273 |
+
# suno_result_path = os.path.join(root_path,'examples','suno_musics')
|
274 |
+
# # self.suno = Suno(result_path=suno_result_path)
|
275 |
+
# self.suno= None
|
276 |
+
# pass
|
277 |
+
|
278 |
+
# def test_text(self, input_text, mode = 'count'):
|
279 |
+
# def process_test( _text, mode = 'count'):
|
280 |
+
# def count_words(text):
|
281 |
+
# words = text.split(" ")
|
282 |
+
# res_dict = {}
|
283 |
+
# for word in words:
|
284 |
+
# if word in res_dict:
|
285 |
+
# res_dict[word] += 1
|
286 |
+
# else:
|
287 |
+
# res_dict[word] = 1
|
288 |
+
# res = "\n".join([f"word: {key}, count: {value}" for key, value in res_dict.items()])
|
289 |
+
# return res
|
290 |
+
|
291 |
+
# def reverse_text(text):
|
292 |
+
# return text[::-1]
|
293 |
+
|
294 |
+
# if mode == 'count':
|
295 |
+
# return count_words(_text)
|
296 |
+
# return reverse_text(_text)
|
297 |
+
|
298 |
+
# res = f"Got text from textbox: {input_text}"
|
299 |
+
# return res, process_test(input_text, mode)
|
300 |
+
# # return res, count_words(input_text)
|
301 |
+
|
302 |
+
# def test_image(self, input_image, filter_mode='sepia'):
|
303 |
+
# def filter_image(input_image, filter_mode='sepia'):
|
304 |
+
# def sepia(input_img):
|
305 |
+
# sepia_filter = np.array([
|
306 |
+
# [0.393, 0.769, 0.189],
|
307 |
+
# [0.349, 0.686, 0.168],
|
308 |
+
# [0.272, 0.534, 0.131]
|
309 |
+
# ])
|
310 |
+
# sepia_img = input_img.dot(sepia_filter.T)
|
311 |
+
# sepia_img /= sepia_img.max()
|
312 |
+
# return sepia_img
|
313 |
+
# def grayscale(input_img):
|
314 |
+
# input_img = np.mean(input_img, axis=2) / np.max(input_img)
|
315 |
+
# return input_img
|
316 |
+
|
317 |
+
# if filter_mode == 'sepia':
|
318 |
+
# return sepia(input_image)
|
319 |
+
# elif filter_mode == 'grayscale':
|
320 |
+
# return grayscale(input_image)
|
321 |
+
# else:
|
322 |
+
# return input_image
|
323 |
+
# res = f"Got image from image input: {input_image}"
|
324 |
+
# filtered_image = filter_image(input_image, filter_mode)
|
325 |
+
# return res, filtered_image
|
326 |
+
|
327 |
+
# def test_audio(self, input_audio, filter_mode='echo', prompt='', checkbox_ls=[]):
|
328 |
+
# def process_audio(input_audio, filter_mode='echo'):
|
329 |
+
# print("input_audio shape: ", input_audio[1].shape, input_audio)
|
330 |
+
# def echo(input_audio):
|
331 |
+
# aud = np.concatenate([input_audio[1], input_audio[1]], axis=0)
|
332 |
+
# return (input_audio[0], aud)
|
333 |
+
# def reverse(input_audio):
|
334 |
+
# return (input_audio[0], input_audio[1][::-1])
|
335 |
+
|
336 |
+
# if filter_mode == 'echo':
|
337 |
+
# res_audio = echo(input_audio)
|
338 |
+
# elif filter_mode == 'reverse':
|
339 |
+
# res_audio = reverse(input_audio)
|
340 |
+
# else:
|
341 |
+
# res_audio = input_audio
|
342 |
+
# return res_audio
|
343 |
+
# print("checkbox_ls: ", checkbox_ls)
|
344 |
+
# res = f"Got audio from audio input: {input_audio}"
|
345 |
+
# wait_audio = 'wait_audio' in checkbox_ls
|
346 |
+
# make_instrumental = 'make_instrumental' in checkbox_ls
|
347 |
+
# if checkbox_ls != []:
|
348 |
+
# print('checlbox_ls: ', checkbox_ls)
|
349 |
+
# generated_audio_path=''
|
350 |
+
# if prompt != '':
|
351 |
+
# music_paths = self.test_music_generation(prompt, make_instrumental, wait_audio)
|
352 |
+
# generated_audio_path = '\n'.join(music_paths)
|
353 |
+
# res = f"Got audio from suno: {generated_audio_path}"
|
354 |
+
# processed_audio = process_audio(input_audio, filter_mode)
|
355 |
+
# return res, processed_audio, generated_audio_path
|
356 |
+
|
357 |
+
# def test_video(self, input_video, filter_mode='flip'):
|
358 |
+
# def process_video(input_video, filter_mode='flip'):
|
359 |
+
# print("input_video data: ", input_video)
|
360 |
+
|
361 |
+
# def clip(input_video):
|
362 |
+
# clip1 = VideoFileClip(input_video)
|
363 |
+
# clip2 = VideoFileClip(input_video).subclip(2,3)
|
364 |
+
# clip3 = VideoFileClip(input_video)
|
365 |
+
# final_clip = concatenate_videoclips([clip1,clip2,clip3])
|
366 |
+
# output_video = "final_clip.mp4"
|
367 |
+
# final_clip.write_videofile(output_video)
|
368 |
+
# return output_video
|
369 |
+
# def flip(input_video):
|
370 |
+
# return np.flip(input_video, axis=1)
|
371 |
+
# def rotate(input_video):
|
372 |
+
# return np.rot90(input_video)
|
373 |
+
# if filter_mode == 'clip':
|
374 |
+
# return clip(input_video)
|
375 |
+
# elif filter_mode == 'flip':
|
376 |
+
# return flip(input_video)
|
377 |
+
# elif filter_mode == 'rotate':
|
378 |
+
# return rotate(input_video)
|
379 |
+
# else:
|
380 |
+
# return input_video
|
381 |
+
# res = f"Got video from video input: {input_video}"
|
382 |
+
# processed_video = process_video(input_video, filter_mode)
|
383 |
+
# return res, processed_video
|
384 |
+
|
385 |
+
# def test_chatbot(self, input_text, history):
|
386 |
+
# history_langchain_format =[]
|
387 |
+
# for human, ai in history:
|
388 |
+
# history_langchain_format.append(HumanMessage(human))
|
389 |
+
# history_langchain_format.append(AIMessage(ai))
|
390 |
+
# history_langchain_format.append(content=input_text)
|
391 |
+
# llm_response = self.llm_model(history_langchain_format)
|
392 |
+
# return llm_response.content
|
393 |
+
|
394 |
+
# def predict(self, message, history):
|
395 |
+
# history_openai_format = []
|
396 |
+
# for human, assistant in history:
|
397 |
+
# history_openai_format.append({"role": "user", "content": human })
|
398 |
+
# history_openai_format.append({"role": "assistant", "content":assistant})
|
399 |
+
# history_openai_format.append({"role": "user", "content": message})
|
400 |
+
|
401 |
+
# response = self.client.chat.completions.create(model='gpt-3.5-turbo',
|
402 |
+
# messages= history_openai_format,
|
403 |
+
# temperature=1.0,
|
404 |
+
# stream=True)
|
405 |
+
|
406 |
+
# partial_message = ""
|
407 |
+
# for chunk in response:
|
408 |
+
# if chunk.choices[0].delta.content is not None:
|
409 |
+
# partial_message = partial_message + chunk.choices[0].delta.content
|
410 |
+
# yield partial_message
|
411 |
+
|
412 |
+
# def predict_v2(self, message, history):
|
413 |
+
|
414 |
+
# url = "https://api.link-ai.chat/v1/chat/completions"
|
415 |
+
# headers = {
|
416 |
+
# 'Authorization': 'Bearer Link_USN4Vru40ciqYkdpeWywmOOIOPHGLYm8EuAGm0xE0b',
|
417 |
+
# 'Content-Type': 'application/json'
|
418 |
+
# }
|
419 |
+
# history_openai_format = []
|
420 |
+
# for human, assistant in history:
|
421 |
+
# history_openai_format.append({"role": "user", "content": human })
|
422 |
+
# history_openai_format.append({"role": "assistant", "content":assistant})
|
423 |
+
# history_openai_format.append({"role": "user", "content": message})
|
424 |
+
|
425 |
+
|
426 |
+
# data = {
|
427 |
+
# "app_code": "default",
|
428 |
+
# "messages": history_openai_format,
|
429 |
+
# }
|
430 |
+
|
431 |
+
# response = requests.post(url, headers=headers, json=data).json()
|
432 |
+
# partial_message = ""
|
433 |
+
# for chunk in response['choices']:
|
434 |
+
# if chunk['message']["content"] is not None:
|
435 |
+
# partial_message = partial_message + chunk['message']["content"]
|
436 |
+
# yield partial_message
|
437 |
+
|
438 |
+
|
439 |
+
# def predict_v3(self, message, history):
|
440 |
+
|
441 |
+
# url = "https://api.link-ai.chat/v1/chat/completions"
|
442 |
+
# headers = {
|
443 |
+
# 'Authorization': 'Bearer Link_USN4Vru40ciqYkdpeWywmOOIOPHGLYm8EuAGm0xE0b',
|
444 |
+
# 'Content-Type': 'application/json'
|
445 |
+
# }
|
446 |
+
# history_openai_format = []
|
447 |
+
# for human, assistant in history:
|
448 |
+
# history_openai_format.append({"role": "user", "content": human })
|
449 |
+
# history_openai_format.append({"role": "assistant", "content":assistant})
|
450 |
+
# history_openai_format.append({"role": "user", "content": message})
|
451 |
+
|
452 |
+
|
453 |
+
# data = {
|
454 |
+
# "app_code": "default",
|
455 |
+
# "messages": history_openai_format,
|
456 |
+
# }
|
457 |
+
|
458 |
+
# response = requests.post(url, headers=headers, json=data).json()
|
459 |
+
# partial_message = ""
|
460 |
+
# for chunk in response['choices']:
|
461 |
+
# if chunk['message']["content"] is not None:
|
462 |
+
# partial_message = partial_message + chunk['message']["content"]
|
463 |
+
# yield partial_message
|
464 |
+
|
465 |
+
# def test_music_generation(self, prompt, make_instrumental=False, wait_audio=False):
|
466 |
+
# request = {
|
467 |
+
# "prompt": prompt,
|
468 |
+
# "make_instrumental": make_instrumental,
|
469 |
+
# "wait_audio": wait_audio
|
470 |
+
# }
|
471 |
+
# # music_ls = self.suno.generate_music(request)
|
472 |
+
# music_ls = []
|
473 |
+
# return music_ls
|
474 |
+
|
475 |
+
# def run_test(self, mode='text'):
|
476 |
+
# tab_interface_ls = {}
|
477 |
+
# if mode == 'text' or mode == 'mix':
|
478 |
+
# comp = gr.Interface(
|
479 |
+
# fn= self.test_text,
|
480 |
+
# inputs=['textbox', gr.Dropdown(['count', 'reverse'])],
|
481 |
+
# outputs=["textbox", "textbox"],
|
482 |
+
# title="test text module",
|
483 |
+
# description="test text.",
|
484 |
+
# theme="huggingface",
|
485 |
+
# examples=[
|
486 |
+
# ["A group of friends go on a road trip to find a hidden treasure."],
|
487 |
+
# ["A scientist discovers a way to travel through time."],
|
488 |
+
# ["A group of survivors try to escape a zombie apocalypse."],
|
489 |
+
# ],
|
490 |
+
# )
|
491 |
+
# tab_interface_ls['Text Ops'] = comp
|
492 |
+
# if mode == 'text':
|
493 |
+
# return comp
|
494 |
+
# if mode == 'image' or mode == 'mix':
|
495 |
+
# # https://www.gradio.app/guides/the-interface-class
|
496 |
+
# comp = gr.Interface(
|
497 |
+
# fn= self.test_image,
|
498 |
+
# inputs=['image', gr.Dropdown(['sepia', 'grayscale'])],
|
499 |
+
# outputs=["textbox",'image'],
|
500 |
+
# title="test image preprocess Module",
|
501 |
+
# description="test text.",
|
502 |
+
# theme="huggingface",
|
503 |
+
# examples=[
|
504 |
+
# ["/mnt/c/Users/wwk/Pictures/OIP.jpg", "sepia"],
|
505 |
+
# ],
|
506 |
+
# )
|
507 |
+
# tab_interface_ls['Image Ops'] = comp
|
508 |
+
# if mode == 'image':
|
509 |
+
# return comp
|
510 |
+
|
511 |
+
# if mode == 'audio' or mode == 'mix':
|
512 |
+
# comp = gr.Interface(
|
513 |
+
# fn= self.test_audio,
|
514 |
+
# inputs=['audio', gr.Dropdown(['echo', 'reverse']), 'textbox', gr.CheckboxGroup([ 'make_instrumental' ,'wait_audio'], label="Suno options", info="make_instrumental<bool>, wait_audio:<bool>") ],
|
515 |
+
# outputs=["textbox", 'audio'],
|
516 |
+
# title="test audio preprocess Module",
|
517 |
+
# description="test audio.",
|
518 |
+
# theme="huggingface",
|
519 |
+
# examples=[
|
520 |
+
# ["/mnt/d/workspace/projects/movie_generator/examples/audio/两只老虎,两只老虎-神秘-欢快-v2.mp3", "echo"],
|
521 |
+
# ["/mnt/d/workspace/projects/movie_generator/examples/audio/两只老虎,两只老虎-神秘-欢快-v2.mp3", "reverse"],
|
522 |
+
# ],
|
523 |
+
# )
|
524 |
+
# tab_interface_ls['Audio Ops'] = comp
|
525 |
+
# if mode == 'audio':
|
526 |
+
# return comp
|
527 |
+
|
528 |
+
# if mode == 'video' or mode == 'mix':
|
529 |
+
# comp = gr.Interface(
|
530 |
+
# fn= self.test_video,
|
531 |
+
# inputs= [ 'video', gr.Dropdown(['clip', 'rotate'])],
|
532 |
+
# outputs=["textbox", 'video'],
|
533 |
+
# title="test video preprocess Module",
|
534 |
+
# description="test video.",
|
535 |
+
# theme="huggingface",
|
536 |
+
# examples=[
|
537 |
+
# ["/mnt/d/workspace/projects/movie_generator/examples/video/2月12日.mp4", "clip"],
|
538 |
+
# ],
|
539 |
+
# )
|
540 |
+
# tab_interface_ls['Video Ops'] = comp
|
541 |
+
# if mode == 'video':
|
542 |
+
# return comp
|
543 |
+
|
544 |
+
# if mode == 'chat' or mode == 'mix':
|
545 |
+
# # https://www.gradio.app/guides/creating-a-custom-chatbot-with-blocks
|
546 |
+
# # comp = gr.ChatInterface(self.test_chatbot)
|
547 |
+
# comp = gr.ChatInterface(self.predict_v2)
|
548 |
+
# tab_interface_ls['ChatBot'] = comp
|
549 |
+
# if mode == 'chat':
|
550 |
+
# return comp
|
551 |
+
# if mode == 'mix':
|
552 |
+
# # mix mode, use radio button to select the mode
|
553 |
+
# comp = gr.TabbedInterface(
|
554 |
+
# list(tab_interface_ls.values()), list(tab_interface_ls.keys())
|
555 |
+
# )
|
556 |
+
# return comp
|
557 |
+
# else:
|
558 |
+
# def flip_text(x):
|
559 |
+
# return x[::-1]
|
560 |
+
# def flip_image(x):
|
561 |
+
# return np.fliplr(x)
|
562 |
+
# with gr.Blocks() as comp:
|
563 |
+
# gr.Markdown("Flip text or image files using this demo.")
|
564 |
+
# with gr.Tab("Flip Text"):
|
565 |
+
# text_input = gr.Textbox()
|
566 |
+
# text_output = gr.Textbox()
|
567 |
+
# text_button = gr.Button("Flip")
|
568 |
+
# with gr.Tab("Flip Image"):
|
569 |
+
# with gr.Row():
|
570 |
+
# image_input = gr.Image()
|
571 |
+
# image_output = gr.Image()
|
572 |
+
# image_button = gr.Button("Flip")
|
573 |
+
|
574 |
+
# with gr.Accordion("Open for More!", open=False):
|
575 |
+
# gr.Markdown("Look at me...")
|
576 |
+
# temp_slider = gr.Slider(
|
577 |
+
# minimum=0.0,
|
578 |
+
# maximum=1.0,
|
579 |
+
# value=0.1,
|
580 |
+
# step=0.1,
|
581 |
+
# interactive=True,
|
582 |
+
# label="Slide me",
|
583 |
+
# )
|
584 |
+
# temp_slider.change(lambda x: x, [temp_slider])
|
585 |
+
|
586 |
+
# text_button.click(flip_text, inputs=text_input, outputs=text_output)
|
587 |
+
# image_button.click(flip_image, inputs=image_input, outputs=image_output)
|
588 |
+
# return comp
|