# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Calculation of the cross-entropy loss function using the huggingface evaluate module.""" import evaluate import datasets import numpy as np import torch from torch import nn, Tensor, tensor _CITATION = """\ @InProceedings{huggingface:module, title = {Loss Metric}, authors={YU YE}, year={2024} } """ _DESCRIPTION = """\ Calculation of the cross-entropy loss function using the huggingface evaluate module. """ _KWARGS_DESCRIPTION = """ Calculates how good are predictions given some references, using certain scores Args: predictions: list of predictions to score. Each predictions should be a string with tokens separated by spaces. references: list of reference for each prediction. Each reference should be a string with tokens separated by spaces. Returns: loss: description of the first score, Examples: Examples should be written in doctest format, and should illustrate how to use the function. >>> my_new_module = evaluate.load("Aye10032/loss_metric") >>> results = my_new_module.compute(references=[0, 1], predictions=[0, 1]) >>> print(results) {'loss': 1.0} """ @evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION) class LossMetric(evaluate.Metric): """Calculation of the cross-entropy loss function using the huggingface evaluate module.""" def _info(self): return evaluate.MetricInfo( # This is the description that will appear on the modules page. module_type="metric", description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, # This defines the format of each prediction and reference features=datasets.Features({ 'predictions': datasets.Value('int64'), 'references': datasets.Value('int64'), }), # Homepage of the module for documentation homepage="http://module.homepage", # Additional links to the codebase or references codebase_urls=["http://github.com/path/to/codebase/of/new_module"], reference_urls=["http://path.to.reference.url/new_module"] ) def _compute(self, predictions, references): """Returns the scores""" pred = tensor(np.array(predictions), dtype=torch.float16) label = tensor(np.array(references), dtype=torch.float16) loss_func = nn.CrossEntropyLoss() loss = loss_func(pred, label) mean_loss = loss.item() / label.shape[0] return { "loss": mean_loss, }