Spaces:
Sleeping
Sleeping
Commit
·
6fd5df1
1
Parent(s):
0274260
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from sentence_transformers import SentenceTransformer
|
3 |
+
|
4 |
+
# Load the model
|
5 |
+
model = SentenceTransformer('sentence-transformers/msmarco-distilbert-dot-v5')
|
6 |
+
|
7 |
+
# Define the Streamlit app
|
8 |
+
def main():
|
9 |
+
st.title("Text Embedding Generator")
|
10 |
+
|
11 |
+
# Get user input
|
12 |
+
text_input = st.text_area("Enter text to generate embeddings:", "")
|
13 |
+
|
14 |
+
if st.button("Generate Embedding"):
|
15 |
+
if text_input:
|
16 |
+
# Call the function to get the embedding
|
17 |
+
embedding = get_emb(text_input)
|
18 |
+
|
19 |
+
# Display the embedding
|
20 |
+
st.success("Embedding generated successfully:")
|
21 |
+
st.write(embedding)
|
22 |
+
else:
|
23 |
+
st.warning("Please enter text to generate embeddings.")
|
24 |
+
|
25 |
+
# Function to get the embedding
|
26 |
+
def get_emb(text):
|
27 |
+
text_emb = model.encode(text)
|
28 |
+
return text_emb
|
29 |
+
|
30 |
+
# Run the Streamlit app
|
31 |
+
if __name__ == "__main__":
|
32 |
+
main()
|