Spaces:
Running
Running
File size: 13,148 Bytes
54f5afe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 |
"""PostgreSQL or SQLite database tables for RAGLite."""
import datetime
import json
from functools import lru_cache
from hashlib import sha256
from pathlib import Path
from typing import Any
import numpy as np
from litellm import get_model_info # type: ignore[attr-defined]
from markdown_it import MarkdownIt
from pydantic import ConfigDict
from sqlalchemy.engine import Engine, make_url
from sqlmodel import (
JSON,
Column,
Field,
Relationship,
Session,
SQLModel,
create_engine,
text,
)
from raglite._config import RAGLiteConfig
from raglite._litellm import LlamaCppPythonLLM
from raglite._typing import Embedding, FloatMatrix, FloatVector, PickledObject
def hash_bytes(data: bytes, max_len: int = 16) -> str:
"""Hash bytes to a hexadecimal string."""
return sha256(data, usedforsecurity=False).hexdigest()[:max_len]
class Document(SQLModel, table=True):
"""A document."""
# Enable JSON columns.
model_config = ConfigDict(arbitrary_types_allowed=True) # type: ignore[assignment]
# Table columns.
id: str = Field(..., primary_key=True)
filename: str
url: str | None = Field(default=None)
metadata_: dict[str, Any] = Field(default_factory=dict, sa_column=Column("metadata", JSON))
# Add relationships so we can access document.chunks and document.evals.
chunks: list["Chunk"] = Relationship(back_populates="document")
evals: list["Eval"] = Relationship(back_populates="document")
@staticmethod
def from_path(doc_path: Path, **kwargs: Any) -> "Document":
"""Create a document from a file path."""
return Document(
id=hash_bytes(doc_path.read_bytes()),
filename=doc_path.name,
metadata_={
"size": doc_path.stat().st_size,
"created": doc_path.stat().st_ctime,
"modified": doc_path.stat().st_mtime,
**kwargs,
},
)
class Chunk(SQLModel, table=True):
"""A document chunk."""
# Enable JSON columns.
model_config = ConfigDict(arbitrary_types_allowed=True) # type: ignore[assignment]
# Table columns.
id: str = Field(..., primary_key=True)
document_id: str = Field(..., foreign_key="document.id", index=True)
index: int = Field(..., index=True)
headings: str
body: str
metadata_: dict[str, Any] = Field(default_factory=dict, sa_column=Column("metadata", JSON))
# Add relationships so we can access chunk.document and chunk.embeddings.
document: Document = Relationship(back_populates="chunks")
embeddings: list["ChunkEmbedding"] = Relationship(back_populates="chunk")
@staticmethod
def from_body(
document_id: str,
index: int,
body: str,
headings: str = "",
**kwargs: Any,
) -> "Chunk":
"""Create a chunk from Markdown."""
return Chunk(
id=hash_bytes(body.encode()),
document_id=document_id,
index=index,
headings=headings,
body=body,
metadata_=kwargs,
)
def extract_headings(self) -> str:
"""Extract Markdown headings from the chunk, starting from the current Markdown headings."""
md = MarkdownIt()
heading_lines = [""] * 10
level = None
for doc in (self.headings, self.body):
for token in md.parse(doc):
if token.type == "heading_open":
level = int(token.tag[1])
elif token.type == "heading_close":
level = None
elif level is not None:
heading_content = token.content.strip().replace("\n", " ")
heading_lines[level] = ("#" * level) + " " + heading_content
heading_lines[level + 1 :] = [""] * len(heading_lines[level + 1 :])
headings = "\n".join([heading for heading in heading_lines if heading])
return headings
@property
def embedding_matrix(self) -> FloatMatrix:
"""Return this chunk's multi-vector embedding matrix."""
# Uses the relationship chunk.embeddings to access the chunk_embedding table.
return np.vstack([embedding.embedding[np.newaxis, :] for embedding in self.embeddings])
def __hash__(self) -> int:
return hash(self.id)
def __repr__(self) -> str:
return json.dumps(
{
"id": self.id,
"document_id": self.document_id,
"index": self.index,
"headings": self.headings,
"body": self.body[:100],
"metadata": self.metadata_,
},
indent=4,
)
def __str__(self) -> str:
"""Context representation of this chunk."""
return f"{self.headings.strip()}\n\n{self.body.strip()}".strip()
class ChunkEmbedding(SQLModel, table=True):
"""A (sub-)chunk embedding."""
__tablename__ = "chunk_embedding"
# Enable Embedding columns.
model_config = ConfigDict(arbitrary_types_allowed=True) # type: ignore[assignment]
# Table columns.
id: int = Field(..., primary_key=True)
chunk_id: str = Field(..., foreign_key="chunk.id", index=True)
embedding: FloatVector = Field(..., sa_column=Column(Embedding(dim=-1)))
# Add relationship so we can access embedding.chunk.
chunk: Chunk = Relationship(back_populates="embeddings")
@classmethod
def set_embedding_dim(cls, dim: int) -> None:
"""Modify the embedding column's dimension after class definition."""
cls.__table__.c["embedding"].type.dim = dim # type: ignore[attr-defined]
class IndexMetadata(SQLModel, table=True):
"""Vector and keyword search index metadata."""
__tablename__ = "index_metadata"
# Enable PickledObject columns.
model_config = ConfigDict(arbitrary_types_allowed=True) # type: ignore[assignment]
# Table columns.
id: str = Field(..., primary_key=True)
version: datetime.datetime = Field(
default_factory=lambda: datetime.datetime.now(datetime.timezone.utc)
)
metadata_: dict[str, Any] = Field(
default_factory=dict, sa_column=Column("metadata", PickledObject)
)
@staticmethod
@lru_cache(maxsize=4)
def _get(id_: str, *, config: RAGLiteConfig | None = None) -> dict[str, Any] | None:
engine = create_database_engine(config)
with Session(engine) as session:
index_metadata_record = session.get(IndexMetadata, id_)
if index_metadata_record is None:
return None
return index_metadata_record.metadata_
@staticmethod
def get(id_: str = "default", *, config: RAGLiteConfig | None = None) -> dict[str, Any]:
metadata = IndexMetadata._get(id_, config=config) or {}
return metadata
class Eval(SQLModel, table=True):
"""A RAG evaluation example."""
__tablename__ = "eval"
# Enable JSON columns.
model_config = ConfigDict(arbitrary_types_allowed=True) # type: ignore[assignment]
# Table columns.
id: str = Field(..., primary_key=True)
document_id: str = Field(..., foreign_key="document.id", index=True)
chunk_ids: list[str] = Field(default_factory=list, sa_column=Column(JSON))
question: str
contexts: list[str] = Field(default_factory=list, sa_column=Column(JSON))
ground_truth: str
metadata_: dict[str, Any] = Field(default_factory=dict, sa_column=Column("metadata", JSON))
# Add relationship so we can access eval.document.
document: Document = Relationship(back_populates="evals")
@staticmethod
def from_chunks(
question: str,
contexts: list[Chunk],
ground_truth: str,
**kwargs: Any,
) -> "Eval":
"""Create a chunk from Markdown."""
document_id = contexts[0].document_id
chunk_ids = [context.id for context in contexts]
return Eval(
id=hash_bytes(f"{document_id}-{chunk_ids}-{question}".encode()),
document_id=document_id,
chunk_ids=chunk_ids,
question=question,
contexts=[str(context) for context in contexts],
ground_truth=ground_truth,
metadata_=kwargs,
)
@lru_cache(maxsize=1)
def create_database_engine(config: RAGLiteConfig | None = None) -> Engine:
"""Create a database engine and initialize it."""
# Parse the database URL and validate that the database backend is supported.
config = config or RAGLiteConfig()
db_url = make_url(config.db_url)
db_backend = db_url.get_backend_name()
# Update database configuration.
connect_args = {}
if db_backend == "postgresql":
# Select the pg8000 driver if not set (psycopg2 is the default), and prefer SSL.
if "+" not in db_url.drivername:
db_url = db_url.set(drivername="postgresql+pg8000")
# Support setting the sslmode for pg8000.
if "pg8000" in db_url.drivername and "sslmode" in db_url.query:
query = dict(db_url.query)
if query.pop("sslmode") != "disable":
connect_args["ssl_context"] = True
db_url = db_url.set(query=query)
elif db_backend == "sqlite":
# Optimize SQLite performance.
pragmas = {"journal_mode": "WAL", "synchronous": "NORMAL"}
db_url = db_url.update_query_dict(pragmas, append=True)
else:
error_message = "RAGLite only supports PostgreSQL and SQLite."
raise ValueError(error_message)
# Create the engine.
engine = create_engine(db_url, pool_pre_ping=True, connect_args=connect_args)
# Install database extensions.
if db_backend == "postgresql":
with Session(engine) as session:
session.execute(text("CREATE EXTENSION IF NOT EXISTS vector;"))
session.commit()
# If the user has configured a llama-cpp-python model, we ensure that LiteLLM's model info is up
# to date by loading that LLM.
if config.embedder.startswith("llama-cpp-python"):
_ = LlamaCppPythonLLM.llm(config.embedder, embedding=True)
llm_provider = "llama-cpp-python" if config.embedder.startswith("llama-cpp") else None
model_info = get_model_info(config.embedder, custom_llm_provider=llm_provider)
embedding_dim = model_info.get("output_vector_size") or -1
assert embedding_dim > 0
# Create all SQLModel tables.
ChunkEmbedding.set_embedding_dim(embedding_dim)
SQLModel.metadata.create_all(engine)
# Create backend-specific indexes.
if db_backend == "postgresql":
# Create a keyword search index with `tsvector` and a vector search index with `pgvector`.
with Session(engine) as session:
metrics = {"cosine": "cosine", "dot": "ip", "euclidean": "l2", "l1": "l1", "l2": "l2"}
session.execute(
text("""
CREATE INDEX IF NOT EXISTS keyword_search_chunk_index ON chunk USING GIN (to_tsvector('simple', body));
""")
)
session.execute(
text(f"""
CREATE INDEX IF NOT EXISTS vector_search_chunk_index ON chunk_embedding
USING hnsw (
(embedding::halfvec({embedding_dim}))
halfvec_{metrics[config.vector_search_index_metric]}_ops
);
""")
)
session.commit()
elif db_backend == "sqlite":
# Create a virtual table for keyword search on the chunk table.
# We use the chunk table as an external content table [1] to avoid duplicating the data.
# [1] https://www.sqlite.org/fts5.html#external_content_tables
with Session(engine) as session:
session.execute(
text("""
CREATE VIRTUAL TABLE IF NOT EXISTS keyword_search_chunk_index USING fts5(body, content='chunk', content_rowid='rowid');
""")
)
session.execute(
text("""
CREATE TRIGGER IF NOT EXISTS keyword_search_chunk_index_auto_insert AFTER INSERT ON chunk BEGIN
INSERT INTO keyword_search_chunk_index(rowid, body) VALUES (new.rowid, new.body);
END;
""")
)
session.execute(
text("""
CREATE TRIGGER IF NOT EXISTS keyword_search_chunk_index_auto_delete AFTER DELETE ON chunk BEGIN
INSERT INTO keyword_search_chunk_index(keyword_search_chunk_index, rowid, body) VALUES('delete', old.rowid, old.body);
END;
""")
)
session.execute(
text("""
CREATE TRIGGER IF NOT EXISTS keyword_search_chunk_index_auto_update AFTER UPDATE ON chunk BEGIN
INSERT INTO keyword_search_chunk_index(keyword_search_chunk_index, rowid, body) VALUES('delete', old.rowid, old.body);
INSERT INTO keyword_search_chunk_index(rowid, body) VALUES (new.rowid, new.body);
END;
""")
)
session.commit()
return engine
|