File size: 13,148 Bytes
54f5afe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
"""PostgreSQL or SQLite database tables for RAGLite."""

import datetime
import json
from functools import lru_cache
from hashlib import sha256
from pathlib import Path
from typing import Any

import numpy as np
from litellm import get_model_info  # type: ignore[attr-defined]
from markdown_it import MarkdownIt
from pydantic import ConfigDict
from sqlalchemy.engine import Engine, make_url
from sqlmodel import (
    JSON,
    Column,
    Field,
    Relationship,
    Session,
    SQLModel,
    create_engine,
    text,
)

from raglite._config import RAGLiteConfig
from raglite._litellm import LlamaCppPythonLLM
from raglite._typing import Embedding, FloatMatrix, FloatVector, PickledObject


def hash_bytes(data: bytes, max_len: int = 16) -> str:
    """Hash bytes to a hexadecimal string."""
    return sha256(data, usedforsecurity=False).hexdigest()[:max_len]


class Document(SQLModel, table=True):
    """A document."""

    # Enable JSON columns.
    model_config = ConfigDict(arbitrary_types_allowed=True)  # type: ignore[assignment]

    # Table columns.
    id: str = Field(..., primary_key=True)
    filename: str
    url: str | None = Field(default=None)
    metadata_: dict[str, Any] = Field(default_factory=dict, sa_column=Column("metadata", JSON))

    # Add relationships so we can access document.chunks and document.evals.
    chunks: list["Chunk"] = Relationship(back_populates="document")
    evals: list["Eval"] = Relationship(back_populates="document")

    @staticmethod
    def from_path(doc_path: Path, **kwargs: Any) -> "Document":
        """Create a document from a file path."""
        return Document(
            id=hash_bytes(doc_path.read_bytes()),
            filename=doc_path.name,
            metadata_={
                "size": doc_path.stat().st_size,
                "created": doc_path.stat().st_ctime,
                "modified": doc_path.stat().st_mtime,
                **kwargs,
            },
        )


class Chunk(SQLModel, table=True):
    """A document chunk."""

    # Enable JSON columns.
    model_config = ConfigDict(arbitrary_types_allowed=True)  # type: ignore[assignment]

    # Table columns.
    id: str = Field(..., primary_key=True)
    document_id: str = Field(..., foreign_key="document.id", index=True)
    index: int = Field(..., index=True)
    headings: str
    body: str
    metadata_: dict[str, Any] = Field(default_factory=dict, sa_column=Column("metadata", JSON))

    # Add relationships so we can access chunk.document and chunk.embeddings.
    document: Document = Relationship(back_populates="chunks")
    embeddings: list["ChunkEmbedding"] = Relationship(back_populates="chunk")

    @staticmethod
    def from_body(
        document_id: str,
        index: int,
        body: str,
        headings: str = "",
        **kwargs: Any,
    ) -> "Chunk":
        """Create a chunk from Markdown."""
        return Chunk(
            id=hash_bytes(body.encode()),
            document_id=document_id,
            index=index,
            headings=headings,
            body=body,
            metadata_=kwargs,
        )

    def extract_headings(self) -> str:
        """Extract Markdown headings from the chunk, starting from the current Markdown headings."""
        md = MarkdownIt()
        heading_lines = [""] * 10
        level = None
        for doc in (self.headings, self.body):
            for token in md.parse(doc):
                if token.type == "heading_open":
                    level = int(token.tag[1])
                elif token.type == "heading_close":
                    level = None
                elif level is not None:
                    heading_content = token.content.strip().replace("\n", " ")
                    heading_lines[level] = ("#" * level) + " " + heading_content
                    heading_lines[level + 1 :] = [""] * len(heading_lines[level + 1 :])
        headings = "\n".join([heading for heading in heading_lines if heading])
        return headings

    @property
    def embedding_matrix(self) -> FloatMatrix:
        """Return this chunk's multi-vector embedding matrix."""
        # Uses the relationship chunk.embeddings to access the chunk_embedding table.
        return np.vstack([embedding.embedding[np.newaxis, :] for embedding in self.embeddings])

    def __hash__(self) -> int:
        return hash(self.id)

    def __repr__(self) -> str:
        return json.dumps(
            {
                "id": self.id,
                "document_id": self.document_id,
                "index": self.index,
                "headings": self.headings,
                "body": self.body[:100],
                "metadata": self.metadata_,
            },
            indent=4,
        )

    def __str__(self) -> str:
        """Context representation of this chunk."""
        return f"{self.headings.strip()}\n\n{self.body.strip()}".strip()


class ChunkEmbedding(SQLModel, table=True):
    """A (sub-)chunk embedding."""

    __tablename__ = "chunk_embedding"

    # Enable Embedding columns.
    model_config = ConfigDict(arbitrary_types_allowed=True)  # type: ignore[assignment]

    # Table columns.
    id: int = Field(..., primary_key=True)
    chunk_id: str = Field(..., foreign_key="chunk.id", index=True)
    embedding: FloatVector = Field(..., sa_column=Column(Embedding(dim=-1)))

    # Add relationship so we can access embedding.chunk.
    chunk: Chunk = Relationship(back_populates="embeddings")

    @classmethod
    def set_embedding_dim(cls, dim: int) -> None:
        """Modify the embedding column's dimension after class definition."""
        cls.__table__.c["embedding"].type.dim = dim  # type: ignore[attr-defined]


class IndexMetadata(SQLModel, table=True):
    """Vector and keyword search index metadata."""

    __tablename__ = "index_metadata"

    # Enable PickledObject columns.
    model_config = ConfigDict(arbitrary_types_allowed=True)  # type: ignore[assignment]

    # Table columns.
    id: str = Field(..., primary_key=True)
    version: datetime.datetime = Field(
        default_factory=lambda: datetime.datetime.now(datetime.timezone.utc)
    )
    metadata_: dict[str, Any] = Field(
        default_factory=dict, sa_column=Column("metadata", PickledObject)
    )

    @staticmethod
    @lru_cache(maxsize=4)
    def _get(id_: str, *, config: RAGLiteConfig | None = None) -> dict[str, Any] | None:
        engine = create_database_engine(config)
        with Session(engine) as session:
            index_metadata_record = session.get(IndexMetadata, id_)
            if index_metadata_record is None:
                return None
        return index_metadata_record.metadata_

    @staticmethod
    def get(id_: str = "default", *, config: RAGLiteConfig | None = None) -> dict[str, Any]:
        metadata = IndexMetadata._get(id_, config=config) or {}
        return metadata


class Eval(SQLModel, table=True):
    """A RAG evaluation example."""

    __tablename__ = "eval"

    # Enable JSON columns.
    model_config = ConfigDict(arbitrary_types_allowed=True)  # type: ignore[assignment]

    # Table columns.
    id: str = Field(..., primary_key=True)
    document_id: str = Field(..., foreign_key="document.id", index=True)
    chunk_ids: list[str] = Field(default_factory=list, sa_column=Column(JSON))
    question: str
    contexts: list[str] = Field(default_factory=list, sa_column=Column(JSON))
    ground_truth: str
    metadata_: dict[str, Any] = Field(default_factory=dict, sa_column=Column("metadata", JSON))

    # Add relationship so we can access eval.document.
    document: Document = Relationship(back_populates="evals")

    @staticmethod
    def from_chunks(
        question: str,
        contexts: list[Chunk],
        ground_truth: str,
        **kwargs: Any,
    ) -> "Eval":
        """Create a chunk from Markdown."""
        document_id = contexts[0].document_id
        chunk_ids = [context.id for context in contexts]
        return Eval(
            id=hash_bytes(f"{document_id}-{chunk_ids}-{question}".encode()),
            document_id=document_id,
            chunk_ids=chunk_ids,
            question=question,
            contexts=[str(context) for context in contexts],
            ground_truth=ground_truth,
            metadata_=kwargs,
        )


@lru_cache(maxsize=1)
def create_database_engine(config: RAGLiteConfig | None = None) -> Engine:
    """Create a database engine and initialize it."""
    # Parse the database URL and validate that the database backend is supported.
    config = config or RAGLiteConfig()
    db_url = make_url(config.db_url)
    db_backend = db_url.get_backend_name()
    # Update database configuration.
    connect_args = {}
    if db_backend == "postgresql":
        # Select the pg8000 driver if not set (psycopg2 is the default), and prefer SSL.
        if "+" not in db_url.drivername:
            db_url = db_url.set(drivername="postgresql+pg8000")
        # Support setting the sslmode for pg8000.
        if "pg8000" in db_url.drivername and "sslmode" in db_url.query:
            query = dict(db_url.query)
            if query.pop("sslmode") != "disable":
                connect_args["ssl_context"] = True
            db_url = db_url.set(query=query)
    elif db_backend == "sqlite":
        # Optimize SQLite performance.
        pragmas = {"journal_mode": "WAL", "synchronous": "NORMAL"}
        db_url = db_url.update_query_dict(pragmas, append=True)
    else:
        error_message = "RAGLite only supports PostgreSQL and SQLite."
        raise ValueError(error_message)
    # Create the engine.
    engine = create_engine(db_url, pool_pre_ping=True, connect_args=connect_args)
    # Install database extensions.
    if db_backend == "postgresql":
        with Session(engine) as session:
            session.execute(text("CREATE EXTENSION IF NOT EXISTS vector;"))
            session.commit()
    # If the user has configured a llama-cpp-python model, we ensure that LiteLLM's model info is up
    # to date by loading that LLM.
    if config.embedder.startswith("llama-cpp-python"):
        _ = LlamaCppPythonLLM.llm(config.embedder, embedding=True)
    llm_provider = "llama-cpp-python" if config.embedder.startswith("llama-cpp") else None
    model_info = get_model_info(config.embedder, custom_llm_provider=llm_provider)
    embedding_dim = model_info.get("output_vector_size") or -1
    assert embedding_dim > 0
    # Create all SQLModel tables.
    ChunkEmbedding.set_embedding_dim(embedding_dim)
    SQLModel.metadata.create_all(engine)
    # Create backend-specific indexes.
    if db_backend == "postgresql":
        # Create a keyword search index with `tsvector` and a vector search index with `pgvector`.
        with Session(engine) as session:
            metrics = {"cosine": "cosine", "dot": "ip", "euclidean": "l2", "l1": "l1", "l2": "l2"}
            session.execute(
                text("""
                CREATE INDEX IF NOT EXISTS keyword_search_chunk_index ON chunk USING GIN (to_tsvector('simple', body));
                """)
            )
            session.execute(
                text(f"""
                CREATE INDEX IF NOT EXISTS vector_search_chunk_index ON chunk_embedding
                USING hnsw (
                     (embedding::halfvec({embedding_dim}))
                     halfvec_{metrics[config.vector_search_index_metric]}_ops
                );
                """)
            )
            session.commit()
    elif db_backend == "sqlite":
        # Create a virtual table for keyword search on the chunk table.
        # We use the chunk table as an external content table [1] to avoid duplicating the data.
        # [1] https://www.sqlite.org/fts5.html#external_content_tables
        with Session(engine) as session:
            session.execute(
                text("""
                CREATE VIRTUAL TABLE IF NOT EXISTS keyword_search_chunk_index USING fts5(body, content='chunk', content_rowid='rowid');
                """)
            )
            session.execute(
                text("""
                CREATE TRIGGER IF NOT EXISTS keyword_search_chunk_index_auto_insert AFTER INSERT ON chunk BEGIN
                    INSERT INTO keyword_search_chunk_index(rowid, body) VALUES (new.rowid, new.body);
                END;
                """)
            )
            session.execute(
                text("""
                CREATE TRIGGER IF NOT EXISTS keyword_search_chunk_index_auto_delete AFTER DELETE ON chunk BEGIN
                    INSERT INTO keyword_search_chunk_index(keyword_search_chunk_index, rowid, body) VALUES('delete', old.rowid, old.body);
                END;
                """)
            )
            session.execute(
                text("""
                CREATE TRIGGER IF NOT EXISTS keyword_search_chunk_index_auto_update AFTER UPDATE ON chunk BEGIN
                    INSERT INTO keyword_search_chunk_index(keyword_search_chunk_index, rowid, body) VALUES('delete', old.rowid, old.body);
                    INSERT INTO keyword_search_chunk_index(rowid, body) VALUES (new.rowid, new.body);
                END;
                """)
            )
            session.commit()
    return engine