Spaces:
Running
Running
File size: 10,131 Bytes
54f5afe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 |
"""Add support for llama-cpp-python models to LiteLLM."""
import asyncio
import logging
import warnings
from collections.abc import AsyncIterator, Callable, Iterator
from functools import cache
from typing import Any, ClassVar, cast
import httpx
import litellm
from litellm import ( # type: ignore[attr-defined]
CustomLLM,
GenericStreamingChunk,
ModelResponse,
convert_to_model_response_object,
)
from litellm.llms.custom_httpx.http_handler import AsyncHTTPHandler, HTTPHandler
from llama_cpp import ( # type: ignore[attr-defined]
ChatCompletionRequestMessage,
CreateChatCompletionResponse,
CreateChatCompletionStreamResponse,
Llama,
LlamaRAMCache,
)
# Reduce the logging level for LiteLLM and flashrank.
logging.getLogger("litellm").setLevel(logging.WARNING)
logging.getLogger("flashrank").setLevel(logging.WARNING)
class LlamaCppPythonLLM(CustomLLM):
"""A llama-cpp-python provider for LiteLLM.
This provider enables using llama-cpp-python models with LiteLLM. The LiteLLM model
specification is "llama-cpp-python/<hugging_face_repo_id>/<filename>@<n_ctx>", where n_ctx is
an optional parameter that specifies the context size of the model. If n_ctx is not provided or
if it's set to 0, the model's default context size is used.
Example usage:
```python
from litellm import completion
response = completion(
model="llama-cpp-python/bartowski/Meta-Llama-3.1-8B-Instruct-GGUF/*Q4_K_M.gguf@4092",
messages=[{"role": "user", "content": "Hello world!"}],
# stream=True
)
```
"""
# Create a lock to prevent concurrent access to llama-cpp-python models.
streaming_lock: ClassVar[asyncio.Lock] = asyncio.Lock()
# The set of supported OpenAI parameters is the intersection of [1] and [2]. Not included:
# max_completion_tokens, stream_options, n, user, logprobs, top_logprobs, extra_headers.
# [1] https://llama-cpp-python.readthedocs.io/en/latest/api-reference/#llama_cpp.Llama.create_chat_completion
# [2] https://docs.litellm.ai/docs/completion/input
supported_openai_params: ClassVar[list[str]] = [
"functions", # Deprecated
"function_call", # Deprecated
"tools",
"tool_choice",
"temperature",
"top_p",
"top_k",
"min_p",
"typical_p",
"stop",
"seed",
"response_format",
"max_tokens",
"presence_penalty",
"frequency_penalty",
"repeat_penalty",
"tfs_z",
"mirostat_mode",
"mirostat_tau",
"mirostat_eta",
"logit_bias",
]
@staticmethod
@cache
def llm(model: str, **kwargs: Any) -> Llama:
# Drop the llama-cpp-python prefix from the model.
repo_id_filename = model.replace("llama-cpp-python/", "")
# Convert the LiteLLM model string to repo_id, filename, and n_ctx.
repo_id, filename = repo_id_filename.rsplit("/", maxsplit=1)
n_ctx = 0
if len(filename_n_ctx := filename.rsplit("@", maxsplit=1)) == 2: # noqa: PLR2004
filename, n_ctx_str = filename_n_ctx
n_ctx = int(n_ctx_str)
# Load the LLM.
with warnings.catch_warnings(): # Filter huggingface_hub warning about HF_TOKEN.
warnings.filterwarnings("ignore", category=UserWarning)
llm = Llama.from_pretrained(
repo_id=repo_id,
filename=filename,
n_ctx=n_ctx,
n_gpu_layers=-1,
verbose=False,
**kwargs,
)
# Enable caching.
llm.set_cache(LlamaRAMCache())
# Register the model info with LiteLLM.
litellm.register_model( # type: ignore[attr-defined]
{
model: {
"max_tokens": llm.n_ctx(),
"max_input_tokens": llm.n_ctx(),
"max_output_tokens": None,
"input_cost_per_token": 0.0,
"output_cost_per_token": 0.0,
"output_vector_size": llm.n_embd() if kwargs.get("embedding") else None,
"litellm_provider": "llama-cpp-python",
"mode": "embedding" if kwargs.get("embedding") else "completion",
"supported_openai_params": LlamaCppPythonLLM.supported_openai_params,
"supports_function_calling": True,
"supports_parallel_function_calling": True,
"supports_vision": False,
}
}
)
return llm
def completion( # noqa: PLR0913
self,
model: str,
messages: list[ChatCompletionRequestMessage],
api_base: str,
custom_prompt_dict: dict[str, Any],
model_response: ModelResponse,
print_verbose: Callable, # type: ignore[type-arg]
encoding: str,
api_key: str,
logging_obj: Any,
optional_params: dict[str, Any],
acompletion: Callable | None = None, # type: ignore[type-arg]
litellm_params: dict[str, Any] | None = None,
logger_fn: Callable | None = None, # type: ignore[type-arg]
headers: dict[str, Any] | None = None,
timeout: float | httpx.Timeout | None = None,
client: HTTPHandler | None = None,
) -> ModelResponse:
llm = self.llm(model)
llama_cpp_python_params = {
k: v for k, v in optional_params.items() if k in self.supported_openai_params
}
response = cast(
CreateChatCompletionResponse,
llm.create_chat_completion(messages=messages, **llama_cpp_python_params),
)
litellm_model_response: ModelResponse = convert_to_model_response_object(
response_object=response,
model_response_object=model_response,
response_type="completion",
stream=False,
)
return litellm_model_response
def streaming( # noqa: PLR0913
self,
model: str,
messages: list[ChatCompletionRequestMessage],
api_base: str,
custom_prompt_dict: dict[str, Any],
model_response: ModelResponse,
print_verbose: Callable, # type: ignore[type-arg]
encoding: str,
api_key: str,
logging_obj: Any,
optional_params: dict[str, Any],
acompletion: Callable | None = None, # type: ignore[type-arg]
litellm_params: dict[str, Any] | None = None,
logger_fn: Callable | None = None, # type: ignore[type-arg]
headers: dict[str, Any] | None = None,
timeout: float | httpx.Timeout | None = None,
client: HTTPHandler | None = None,
) -> Iterator[GenericStreamingChunk]:
llm = self.llm(model)
llama_cpp_python_params = {
k: v for k, v in optional_params.items() if k in self.supported_openai_params
}
stream = cast(
Iterator[CreateChatCompletionStreamResponse],
llm.create_chat_completion(messages=messages, **llama_cpp_python_params, stream=True),
)
for chunk in stream:
choices = chunk.get("choices", [])
for choice in choices:
text = choice.get("delta", {}).get("content", None)
finish_reason = choice.get("finish_reason")
litellm_generic_streaming_chunk = GenericStreamingChunk(
text=text, # type: ignore[typeddict-item]
is_finished=bool(finish_reason),
finish_reason=finish_reason, # type: ignore[typeddict-item]
usage=None,
index=choice.get("index"), # type: ignore[typeddict-item]
provider_specific_fields={
"id": chunk.get("id"),
"model": chunk.get("model"),
"created": chunk.get("created"),
"object": chunk.get("object"),
},
)
yield litellm_generic_streaming_chunk
async def astreaming( # type: ignore[misc,override] # noqa: PLR0913
self,
model: str,
messages: list[ChatCompletionRequestMessage],
api_base: str,
custom_prompt_dict: dict[str, Any],
model_response: ModelResponse,
print_verbose: Callable, # type: ignore[type-arg]
encoding: str,
api_key: str,
logging_obj: Any,
optional_params: dict[str, Any],
acompletion: Callable | None = None, # type: ignore[type-arg]
litellm_params: dict[str, Any] | None = None,
logger_fn: Callable | None = None, # type: ignore[type-arg]
headers: dict[str, Any] | None = None,
timeout: float | httpx.Timeout | None = None, # noqa: ASYNC109
client: AsyncHTTPHandler | None = None,
) -> AsyncIterator[GenericStreamingChunk]:
# Start a synchronous stream.
stream = self.streaming(
model,
messages,
api_base,
custom_prompt_dict,
model_response,
print_verbose,
encoding,
api_key,
logging_obj,
optional_params,
acompletion,
litellm_params,
logger_fn,
headers,
timeout,
)
await asyncio.sleep(0) # Yield control to the event loop after initialising the context.
# Wrap the synchronous stream in an asynchronous stream.
async with LlamaCppPythonLLM.streaming_lock:
for litellm_generic_streaming_chunk in stream:
yield litellm_generic_streaming_chunk
await asyncio.sleep(0) # Yield control to the event loop after each token.
# Register the LlamaCppPythonLLM provider.
if not any(provider["provider"] == "llama-cpp-python" for provider in litellm.custom_provider_map):
litellm.custom_provider_map.append(
{"provider": "llama-cpp-python", "custom_handler": LlamaCppPythonLLM()}
)
litellm.suppress_debug_info = True
|