File size: 10,131 Bytes
54f5afe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
"""Add support for llama-cpp-python models to LiteLLM."""

import asyncio
import logging
import warnings
from collections.abc import AsyncIterator, Callable, Iterator
from functools import cache
from typing import Any, ClassVar, cast

import httpx
import litellm
from litellm import (  # type: ignore[attr-defined]
    CustomLLM,
    GenericStreamingChunk,
    ModelResponse,
    convert_to_model_response_object,
)
from litellm.llms.custom_httpx.http_handler import AsyncHTTPHandler, HTTPHandler
from llama_cpp import (  # type: ignore[attr-defined]
    ChatCompletionRequestMessage,
    CreateChatCompletionResponse,
    CreateChatCompletionStreamResponse,
    Llama,
    LlamaRAMCache,
)

# Reduce the logging level for LiteLLM and flashrank.
logging.getLogger("litellm").setLevel(logging.WARNING)
logging.getLogger("flashrank").setLevel(logging.WARNING)


class LlamaCppPythonLLM(CustomLLM):
    """A llama-cpp-python provider for LiteLLM.

    This provider enables using llama-cpp-python models with LiteLLM. The LiteLLM model
    specification is "llama-cpp-python/<hugging_face_repo_id>/<filename>@<n_ctx>", where n_ctx is
    an optional parameter that specifies the context size of the model. If n_ctx is not provided or
    if it's set to 0, the model's default context size is used.

    Example usage:

    ```python
    from litellm import completion

    response = completion(
        model="llama-cpp-python/bartowski/Meta-Llama-3.1-8B-Instruct-GGUF/*Q4_K_M.gguf@4092",
        messages=[{"role": "user", "content": "Hello world!"}],
        # stream=True
    )
    ```
    """

    # Create a lock to prevent concurrent access to llama-cpp-python models.
    streaming_lock: ClassVar[asyncio.Lock] = asyncio.Lock()

    # The set of supported OpenAI parameters is the intersection of [1] and [2]. Not included:
    # max_completion_tokens, stream_options, n, user, logprobs, top_logprobs, extra_headers.
    # [1] https://llama-cpp-python.readthedocs.io/en/latest/api-reference/#llama_cpp.Llama.create_chat_completion
    # [2] https://docs.litellm.ai/docs/completion/input
    supported_openai_params: ClassVar[list[str]] = [
        "functions",  # Deprecated
        "function_call",  # Deprecated
        "tools",
        "tool_choice",
        "temperature",
        "top_p",
        "top_k",
        "min_p",
        "typical_p",
        "stop",
        "seed",
        "response_format",
        "max_tokens",
        "presence_penalty",
        "frequency_penalty",
        "repeat_penalty",
        "tfs_z",
        "mirostat_mode",
        "mirostat_tau",
        "mirostat_eta",
        "logit_bias",
    ]

    @staticmethod
    @cache
    def llm(model: str, **kwargs: Any) -> Llama:
        # Drop the llama-cpp-python prefix from the model.
        repo_id_filename = model.replace("llama-cpp-python/", "")
        # Convert the LiteLLM model string to repo_id, filename, and n_ctx.
        repo_id, filename = repo_id_filename.rsplit("/", maxsplit=1)
        n_ctx = 0
        if len(filename_n_ctx := filename.rsplit("@", maxsplit=1)) == 2:  # noqa: PLR2004
            filename, n_ctx_str = filename_n_ctx
            n_ctx = int(n_ctx_str)
        # Load the LLM.
        with warnings.catch_warnings():  # Filter huggingface_hub warning about HF_TOKEN.
            warnings.filterwarnings("ignore", category=UserWarning)
            llm = Llama.from_pretrained(
                repo_id=repo_id,
                filename=filename,
                n_ctx=n_ctx,
                n_gpu_layers=-1,
                verbose=False,
                **kwargs,
            )
        # Enable caching.
        llm.set_cache(LlamaRAMCache())
        # Register the model info with LiteLLM.
        litellm.register_model(  # type: ignore[attr-defined]
            {
                model: {
                    "max_tokens": llm.n_ctx(),
                    "max_input_tokens": llm.n_ctx(),
                    "max_output_tokens": None,
                    "input_cost_per_token": 0.0,
                    "output_cost_per_token": 0.0,
                    "output_vector_size": llm.n_embd() if kwargs.get("embedding") else None,
                    "litellm_provider": "llama-cpp-python",
                    "mode": "embedding" if kwargs.get("embedding") else "completion",
                    "supported_openai_params": LlamaCppPythonLLM.supported_openai_params,
                    "supports_function_calling": True,
                    "supports_parallel_function_calling": True,
                    "supports_vision": False,
                }
            }
        )
        return llm

    def completion(  # noqa: PLR0913
        self,
        model: str,
        messages: list[ChatCompletionRequestMessage],
        api_base: str,
        custom_prompt_dict: dict[str, Any],
        model_response: ModelResponse,
        print_verbose: Callable,  # type: ignore[type-arg]
        encoding: str,
        api_key: str,
        logging_obj: Any,
        optional_params: dict[str, Any],
        acompletion: Callable | None = None,  # type: ignore[type-arg]
        litellm_params: dict[str, Any] | None = None,
        logger_fn: Callable | None = None,  # type: ignore[type-arg]
        headers: dict[str, Any] | None = None,
        timeout: float | httpx.Timeout | None = None,
        client: HTTPHandler | None = None,
    ) -> ModelResponse:
        llm = self.llm(model)
        llama_cpp_python_params = {
            k: v for k, v in optional_params.items() if k in self.supported_openai_params
        }
        response = cast(
            CreateChatCompletionResponse,
            llm.create_chat_completion(messages=messages, **llama_cpp_python_params),
        )
        litellm_model_response: ModelResponse = convert_to_model_response_object(
            response_object=response,
            model_response_object=model_response,
            response_type="completion",
            stream=False,
        )
        return litellm_model_response

    def streaming(  # noqa: PLR0913
        self,
        model: str,
        messages: list[ChatCompletionRequestMessage],
        api_base: str,
        custom_prompt_dict: dict[str, Any],
        model_response: ModelResponse,
        print_verbose: Callable,  # type: ignore[type-arg]
        encoding: str,
        api_key: str,
        logging_obj: Any,
        optional_params: dict[str, Any],
        acompletion: Callable | None = None,  # type: ignore[type-arg]
        litellm_params: dict[str, Any] | None = None,
        logger_fn: Callable | None = None,  # type: ignore[type-arg]
        headers: dict[str, Any] | None = None,
        timeout: float | httpx.Timeout | None = None,
        client: HTTPHandler | None = None,
    ) -> Iterator[GenericStreamingChunk]:
        llm = self.llm(model)
        llama_cpp_python_params = {
            k: v for k, v in optional_params.items() if k in self.supported_openai_params
        }
        stream = cast(
            Iterator[CreateChatCompletionStreamResponse],
            llm.create_chat_completion(messages=messages, **llama_cpp_python_params, stream=True),
        )
        for chunk in stream:
            choices = chunk.get("choices", [])
            for choice in choices:
                text = choice.get("delta", {}).get("content", None)
                finish_reason = choice.get("finish_reason")
                litellm_generic_streaming_chunk = GenericStreamingChunk(
                    text=text,  # type: ignore[typeddict-item]
                    is_finished=bool(finish_reason),
                    finish_reason=finish_reason,  # type: ignore[typeddict-item]
                    usage=None,
                    index=choice.get("index"),  # type: ignore[typeddict-item]
                    provider_specific_fields={
                        "id": chunk.get("id"),
                        "model": chunk.get("model"),
                        "created": chunk.get("created"),
                        "object": chunk.get("object"),
                    },
                )
                yield litellm_generic_streaming_chunk

    async def astreaming(  # type: ignore[misc,override]  # noqa: PLR0913
        self,
        model: str,
        messages: list[ChatCompletionRequestMessage],
        api_base: str,
        custom_prompt_dict: dict[str, Any],
        model_response: ModelResponse,
        print_verbose: Callable,  # type: ignore[type-arg]
        encoding: str,
        api_key: str,
        logging_obj: Any,
        optional_params: dict[str, Any],
        acompletion: Callable | None = None,  # type: ignore[type-arg]
        litellm_params: dict[str, Any] | None = None,
        logger_fn: Callable | None = None,  # type: ignore[type-arg]
        headers: dict[str, Any] | None = None,
        timeout: float | httpx.Timeout | None = None,  # noqa: ASYNC109
        client: AsyncHTTPHandler | None = None,
    ) -> AsyncIterator[GenericStreamingChunk]:
        # Start a synchronous stream.
        stream = self.streaming(
            model,
            messages,
            api_base,
            custom_prompt_dict,
            model_response,
            print_verbose,
            encoding,
            api_key,
            logging_obj,
            optional_params,
            acompletion,
            litellm_params,
            logger_fn,
            headers,
            timeout,
        )
        await asyncio.sleep(0)  # Yield control to the event loop after initialising the context.
        # Wrap the synchronous stream in an asynchronous stream.
        async with LlamaCppPythonLLM.streaming_lock:
            for litellm_generic_streaming_chunk in stream:
                yield litellm_generic_streaming_chunk
                await asyncio.sleep(0)  # Yield control to the event loop after each token.


# Register the LlamaCppPythonLLM provider.
if not any(provider["provider"] == "llama-cpp-python" for provider in litellm.custom_provider_map):
    litellm.custom_provider_map.append(
        {"provider": "llama-cpp-python", "custom_handler": LlamaCppPythonLLM()}
    )
    litellm.suppress_debug_info = True