Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,13 +1,22 @@
|
|
1 |
# prompt: write a streamlit app that converts english text into french text when translate button is pressed. The title of page should be "Translate to French"."
|
2 |
-
import
|
3 |
-
from transformers import pipeline
|
4 |
-
import sentencepiece
|
5 |
|
6 |
st.title("Translate to French")
|
7 |
-
|
|
|
8 |
|
9 |
if st.button("Translate"):
|
10 |
-
|
11 |
-
|
12 |
-
|
|
|
|
|
|
|
|
|
13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
# prompt: write a streamlit app that converts english text into french text when translate button is pressed. The title of page should be "Translate to French"."
|
2 |
+
from transformers import M2M100ForConditionalGeneration, M2M100Tokenizer
|
|
|
|
|
3 |
|
4 |
st.title("Translate to French")
|
5 |
+
|
6 |
+
input_text = st.text_input("Enter text to translate")
|
7 |
|
8 |
if st.button("Translate"):
|
9 |
+
# Load the pre-trained model and tokenizer
|
10 |
+
model_name = "facebook/m2m100_418M"
|
11 |
+
model = M2M100ForConditionalGeneration.from_pretrained(model_name)
|
12 |
+
tokenizer = M2M100Tokenizer.from_pretrained(model_name)
|
13 |
+
|
14 |
+
# Tokenize input text
|
15 |
+
input_ids = tokenizer.encode(input_text, return_tensors="pt")
|
16 |
|
17 |
+
# Generate translation
|
18 |
+
translated_ids = model.generate(input_ids, target_language="fr")
|
19 |
+
|
20 |
+
# Decode and display the translated text
|
21 |
+
translation = tokenizer.decode(translated_ids[0], skip_special_tokens=True)
|
22 |
+
st.write(translation)
|